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A B S T R A C T

Proton therapy is a fast growing treatment modality for cancer and is in selected cases preferred over conven-
tional radiotherapy with photons because of the highly conformal dose distribution that can be achieved with
protons due to their steep dose gradients. However, these steep gradients also make proton therapy sensitive to
range uncertainties. Proton ranges are calculated from proton stopping powers relative to that in water (Relative
Stopping Power, RSP). The RSPs needed for a treatment plan can be estimated from CT (Computed Tomography)
data of a patient. High accuracy reference values of RSPs are required to assess the accuracy of these CT based
estimates. In this paper we present a water phantom that enables accurate measurement of depth dose profiles in
water. Experimental RSPs with a relative standard uncertainty smaller than 0.4% (1σ) for samples with a water
equivalent thickness of about 2 cm can be derived from the measured depth dose distributions. Most CT based
RSP estimates use an approximate RSP model based on the Bethe-Bloch formula without the shell, density,
Barkas and Bloch correction. In the Geant4 Monte Carlo code these corrections are included and RSP calculations
with this code are expected to be more accurate. In this work, a set of 32 well defined (composition and density),
mostly clinically relevant materials is used to assess the correspondence between RSPs that were measured, that
were estimated from the approximate RSP model and that were calculated from Monte Carlo simulations. With
the measured RSPs we provide a ground-truth bench mark to test the validity of RSPs derived from CT imaging
and Monte Carlo simulations.

1. Introduction

The potential advantage of protons over conventional radiation
modalities (photons, electrons) for radiotherapy of cancer was first
mentioned by Wilson in 1946 [1]. Protons have a finite range and local
high dose region which facilitate a higher conformity to the tumor and
less dose to the surrounding healthy tissues as compared to conven-
tional irradiation with photons. Accurate positioning of the local high
dose region is critical for exploiting the benefit of protons over photons.
In proton therapy, each tissue is characterized by a proton stopping
power relative to water (relative stopping power, RSP) that is derived
from X-ray computed tomography (CT) data of the patient. Un-
certainties in these RSPs introduce range uncertainties which have to be
taken into account in treatment planning by using safety margins. These
safety margins reduce the possibility to fully exploit the advantage of
proton irradiations by limiting beam angles and increasing dose to
healthy and sometimes critical tissues surrounding the tumor. Different
methods have been proposed to derive RSPs from CT data of the

patient. Single energy CT (SECT) methods typically correlate measured
CT numbers to RSPs based on calculated CT numbers and RSPs for
tissue substitutes or average tissue compositions [2,3]. Dual energy CT
(DECT) provides measured CT numbers for two different spectral
photon distributions and allows determination of the relative electron
density and an effective atomic number [4–10]. RSPs can be calculated
from the measured relative electron density and a relation between this
effective atomic number and the mean excitation energy in the Bethe-
Bloch formalism for calculation of stopping powers [10,11]. To assess
the validity of the different CT-based methods for calculation of RSPs an
accurate method for measurement of RSPs is needed.

In this paper we introduce an accurate method to derive RSPs from
measured depth dose distributions using a water phantom in a proton
beamline. Measured RSP’s are presented for a set of 32 well defined
(composition and density), mostly clinically relevant materials. These
measured RSPs are used as ground-truth values to assess the accuracy of
the Bethe-Bloch formula without the higher order corrections and of
Geant4 Monte Carlo simulations to predict RSPs.
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2. Materials and methods

2.1. Accuracy of stopping power calculations based on the Bethe-Bloch
equation

The total proton stopping power is due to energy transfer of the
proton to the electrons (electronic stopping) and to the nuclei (nuclear
stopping) of the target material. Electronic stopping causes ionization
and excitation of target atoms and energy loss of the proton. Nuclear
stopping changes the direction of the proton and the intensity of the
incoming proton beam but contributes less than 0.1% to the total
stopping power above 0.4 MeV [12] and is thus not relevant for range
calculations. The Bethe-Bloch formula that describes the electronic
stopping power of protons can be expressed as [13,14]
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with re the classical electron radius and m ce
2 the electron rest energy

with c the speed of light in vacuum. The first factor in the energy loss is
proportional to β1/ 2 with =β ν/c and v the proton velocity. The
second factor is the electron density of the target material ρe, which
equals N ρZ A/A with mass density ρ, Avogadro’s number NA, atomic
number Z and atomic weight A. The last factor is the stopping number
L β( ), which is the sum of the primary stopping number L0, the Barkas
correction L1, the Bloch correction L2 and higher order corrections
which are negligible compared to L1 and L2.
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The mean excitation energy term 〈 〉Iln takes into account the elec-
tronic structure of the target material. The mean excitation energy 〈 〉I is
defined as the effective value (averaged over all possible electron states
(ionization, vibration and excitation)) of the minimum energy transfer
in a collision. The shell correction term C Z/ addresses the fact that
when the proton velocity decreases from relativistic energies the proton
velocity is no longer much larger than the bound electron velocity as
required for the Bethe-Bloch theory to be valid. The density effect term
δ/2 corrects for polarization effects in the target material, reducing the
stopping power by a decrease of the assumed free-space electro-
magnetic field of the proton by the dielectric constant of the target
material [14]. We have estimated from information in the literature the
relative importance of the different correction terms with respect to the
term − 〈 〉f β I( ) ln .

Shell corrections (C Z/ ) become especially important for the inner
shell electrons of the heavier elements. They have been calculated using
hydrogenic wave functions [15] or the local density approximation
[13]. Both methods seem to give consistent results. Low Z elements
have the smallest correction. For elements most relevant for proton
therapy (Z < 20) the absolute value of the correction term is around
0.15 between 1 and 10MeV and decreases to< 0.1 between 10 and
40MeV and< 0.05 between 40 and 250MeV. This corresponds to a
relative decrease of the stopping power of 3–4% for energies between 1
and 10MeV and approximately 1–1.5% between 10 and 40MeV
and<1% for energies between 40 and 250MeV.

The density effect δ( /2) only becomes relevant if the kinetic energy
of the proton exceeds its rest energy and is therefore of limited im-
portance for clinically used proton energies (up to 250MeV). The ab-
solute contribution of the density effect is estimated (from Fig. 11 in

[13]) to be smaller than 0.01 for all elements and energies below
200MeV. Because − 〈 〉f β I( ) ln is larger than 5 for Z between 1 and 20
and energies larger than 10MeV this implies a correction< 0.2% to the
stopping power.

The Barkas correction (L1) corrects for the higher density of target
electrons in the vicinity of the positively charged proton. For low en-
ergy protons this effect becomes important because the target electrons
have time to move towards the stopping protons. Ashley et al. [16]
derived an empirical formula for low energy projectiles to approximate
this effect. This formula was used by Bichsel [12] who reports a Barkas
correction of 0.36% for 10MeV protons on aluminium. Using the em-
pirical approach of Ziegler (Eq. 35 in [13]) we estimate that the Barkas
correction is smaller than 0.9% for energies above 10MeV for Z be-
tween 1 and 20.

The Bloch correction (L2) originates from close collisions of protons
with target electrons and mostly depends on the proton energy and
little on the target material. From Eq. (5) from Bichsel [12] we conclude
that the Bloch correction is smaller than 0.2% for energies between 5
and 10MeV and< 0.1% above 10MeV.

Bragg and Kleeman [17] proposed an additivity rule for mass
stopping powers S ρ/ of elements to determine the mass stopping power
of a mixture or compound. Following this Bragg additivity rule the
mean excitation energy 〈 〉Iln of a compound can be approximated by
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with the mass fraction ωk and mean excitation energy 〈 〉Ik of element k
in the compound. The validity domain and the accuracy of the Bragg
additivity rule have not been well established. The Bragg additivity rule
does not account for different states of aggregation and chemical
binding between atoms in a molecule. The effect of the state of ag-
gregation is for water (vapor, liquid or ice) the largest for proton en-
ergies of 50–100 keV [18]. From core and bond corrections applied in
the software package SRIM [14] to account for chemical binding we
conclude that the corrections may amount to 6–7% in the stopping
region (up to 1MeV) and are applied as a constant (energy in-
dependent) scaling factor. For energies above 3–4MeV no corrections
are applied in SRIM. The uncertainty in the 〈 〉I values of the elements is
difficult to estimate but experiments suggest that tabulated elemental〈 〉I
values [19,20] are too low for the elements [21], leading to under-
estimation of 〈 〉I values for compounds when calculated with the Bragg
additivity rule [22].

The range of a 10MeV proton in water in the continuous slowing
down approximation (CSDA) is 1.23mm and this decreases rapidly for
lower energies: for 5MeV protons it has already decreased to 0.36mm
[23]. Consequently, for energies below 10MeV, correction terms which
contribute less than 10% (equivalent to 0.1mm water) are not relevant
for the total range prediction with the Bethe-Bloch formula. The overall
contribution of the correction terms is dominated by the shell correc-
tion which amounts −1.5 to −1% for energies between 10 and 40MeV
and −1 to 0% between 40 and 250MeV. The Barkas correction con-
tributes< 1% above 10MeV. These corrections partly cancel out due to
their respectively negative and positive sign. As the higher energies
contribute most to the range (40MeV protons have a CSDA range of
only 1.49 cm [23]), the total effect on the range of all correction terms
is estimated to be less than 1–1.5% for protons with clinically relevant
energies.

Consequently, the electronic stopping power of a material can be
approximated within this estimated accuracy of 1–1.5% by
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provided the value used for 〈 〉I is correct.
The electronic stopping power relative to water (relative stopping

power, RSP) can then be approximated by
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