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A B S T R A C T

Neutron transport has been still under very active development in research institutions and academia throughout
the world. The spatial, temporal, energy and directional angle dependence make it remains one of the most
computationally challenging problems in the world. The correct P1 approximation to the neutron transport
equation is not the first order diffusion equation, but the second-order in time, which is called telegraph
equation. In this paper, a synopsis derivation of the point kinetics telegraph model is obtained from the neutron
transport equation as a couple system of stiff differential equations. The problem of the obtained system is
formulated in the matrix form and solved by higher orders Magnus expansion, where the first successive three
orders of Magnus expansion are derived analytically for the point telegraph equations with multi-group of de-
layed neutrons and various different types of reactivity. These approximations depend on the exponential
function of Magnus matrix, where the calculations are obtained using the eigenvalues of Magnus matrix and the
corresponding eigenvectors. The proposed methods are tested using different cases of reactivity such as step,
ramp and sinusoidal reactivity insertions. The numerical results indicate that the high order of Magnus ex-
pansion approximations is accurate compared with the traditional methods.

1. Introduction

The determination of the distribution of neutrons is the central
problem of nuclear reactor theory. In fact, the physical operations in a
nuclear reactor permanently depend on the distribution (Duderstadt
and Hamilton, 1976) of neutron density, whose mathematical descrip-
tion is based on the balance equation i.e. neutron-transport equation
(Hetrick, 1971; Stacey, 2007). The mathematical category of this
equation is integro-differential one, and the required statistical dis-
tribution of neutrons flux depends on the variables: time; energy; spa-
tial and angular direction. As a rule, to get a satisfactory solution, the
simplified forms are used for practical calculations of the neutron
transport equation of nuclear reactors. Most reactor studies developed
the neutron behavior as a diffusion process. The modified equation that
is known as a multigroup diffusion methodology (Lewis and Miller,
1993; Marchuk, G.I. and Lebedev, V.I., 1986; Cho, 2005; Sutton, T.M.
and Aviles, B.N., 1996) are generally used for reactor analysis, which is
also utilized in other branches of engineering calculation codes. Fur-
ther, many of the most useful neutron models obtained from approx-
imations to the neutron transport equation reduce to familiar form,
such as telegraph equations. These simplifications result from the
elimination of various independent variables in the general formulation

are usually introduced by virtue of certain limitations imposed on the
physical situation. The feature of this equation is that it describes
physical phenomena which exhibit both wavelike characteristics and
residual disturbance effects (Robert and David, 1960). The wave like
behavior is given by the second-order term in t, and the residual dis-
turbance effect, by the first-order term in t. Wave effects propagate with
a finite velocity, and time-dependent neutron phenomena should
properly include such a term since time-wise variations in neutron
population cannot be sensed at a given distance from the source in less
time than it takes a neutron of speed v to reach that point. However,
after the passage of this ”wave,” the disturbance persists and this effect
is described by the first-order term. Moreover, The system of the neu-
tron telegraph equations represents the modified system of the point
kinetics equations which is one of the most important systems in the
nuclear engineering derived from the neutron transport equation
(Weinberg and Noderer, 1951; Weinberg and wigner, 1958;
Meghreblian and Holmes, 1960; Beckurts and Wirtz, 1964). Recently,
the successive publications (Altahhan et al., 2016; 2017a,b,c) devel-
oped a telegraph model of the point reactor kinetics (TPRK) based on
the mono-energetic, non-fractional order telegraph approximation of
the neutron transport equation. The modified model was solved for
several cases of time varying reactivities and temperature feedback
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(non-linear system model), while comparing it to that of the diffusion
point reactor kinetics model in an infinite thermal homogenous nuclear
reactor, (Altahhan et al, 2017a). Furthermore, the proposed system of
non-linear telegraph model was solved analytically for a linear insertion
of reactivity, which typically introduced by lifting the control rods
discontinuously and manually during the cold start-up of a subcritical
nuclear reactor. In fact, the telegraph model introduces a new para-
meter called the relaxation time (s). The analysis was extended to study
its impact on the analytical solution for this case of reactivity insertion
and for several speeds of lifting the control rods. The modified tele-
graph system proved that as the relaxation time increases, the solution
response is relaxed behind that of the diffusion model (Altahhan et al.,
2017b).

In this paper, the derived neutron point telegraph kinetics model is
developed for the finite nuclear reactor system. A mathematical ap-
proach based on the successive approximations of Magnus expansion
was developed and formulated to obtain a complete solution of the
telegraph point reactor kinetics model (TPRK). The model was applied
and solved for the case in which a step insertion of reactivity is in-
troduced into a finite and infinite thermal nuclear reactor as well as
developed a matrix form of the model. The paper is organized as fol-
lows: the point kinetics telegraph model was derived from the neutron
transport equation in section 2. The developed stiff coupled differential
equations were formulated in the matrix form of the differential
equations in section 3. Section 4 includes the solution of the presented
system based on the approximations of Magnus expansion for the dif-
ferent case of time-varying reactivities, where section 5 comprises of
the analysis of results and discussions. Finally, the conclusion is given in
section 6.

2. The point telegraph kinetics system

The determination of the distribution of neutrons in the nuclear
reactor that determines the rate at which various nuclear reaction oc-
curs within the reactor generally depends on the variables: position,
energy, direction and time. The neutron transport equation along with
its initial condition in terms of the angular flux is (Duderstadt and
Hamilton, 1976)
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where the initial condition is

=φ E φ Er r( , , Ω̂, 0) ( , , Ω̂),0 (2)

where, φ E tr( , , Ω̂, ) is the angular flux as a function of the position
vector r, time t, the neutron direction of motion Ω̂ and energy E, v is the

neutron speed, Σt is the total cross section, ⎜ ⎟
⎛
⎝
′ → ′ → ⎞

⎠ˆE EΣ , Ω Ω̂s is

scattering cross section from energy ′E to E and from direction ′Ω to Ω,
s E tr( , , Ω̂, ) is the neutron source term and rs denotes a point on the
surface.

The neutron transport equation has seven independent variables
E tr( , , Ω̂, ) and any attempt to solve the transport equation for a rea-

listic system without an approximation is incompetent and need a
heavy use of a digital computer. Assuming that the neutron energy
doesn't change in a scattering collision, the scattering cross section
takes the form
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where ′ −δ E E( ) is the Dirac δ-function defined by the property

∫ ′ − ′ ′ =f x δ x x dx f x( ) ( ) ( ). (4)

That is means, the scattering term in the transport equation is
simplified to:
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When certain assumptions are made for neutron transport equation
about the energy dependence of the neutron flux, i. e by assuming that
one can portray the neutrons by a single energy or speed, the explicit
dependence on energy is eliminated to write the one speed neutron
transport equation as:
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If the integral on both sides is regarded over Ω̂, the explicit form
taken by the neutron conservation equation will be (Duderstadt and
Hamilton, 1976):
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where, ∫≡t φ t dr rΦ( , ) ( , Ω̂, ) Ω̂π4 is the zero moment of the angular
flux, which is the scalar flux. ∫≡t φ t dJ r r( , ) Ω̂ ( , Ω̂, ) Ω̂π4 is the first
moment of the angular flux, which is the neutron current density.

After mathematical manipulated of the one-speed neutron transport
equation by multiplying equation (6) by Ω̂ followed by integrating over
the direction, the corresponding equation for the current density J r t( , )
in the one-speed case is obtained as:
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where, = ′̂μ Ω̂. Ω0 is the average scattering angle cosine, and

∫≡S t s t dr r( , ) Ω̂ ( , Ω̂, ) Ω̂π1 4 is the first moment of the neutron source.
Let us assume the following successive assumption. First, the an-

gular flux is only linearly anisotropic i.e. depends weakly only on the
angle which means that ∫∇ = ∇φ t d tr r. Ω̂Ω̂ ( , Ω̂, ) Ω̂ Φ( , )π4

1
3 . Second,

the neutron source is isotropic, so that =S tr( , ) 01 . Third, the nuclear
reactor is homogenous which means that the total and scattering cross
section are independent on the space. The effect of moving the control
rod on the absorption cross section = −Σ Σ Σa t s depend only on time.
Considering the previous assumptions, equations (7) and (8) take the
following form:
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where = − μΣ Σ Σtr t s0 is the transport cross section.
Equations (9) and (10) are known in nuclear reactor analysis as the

P1 approximation (in the one-speed approximation). The neutron dif-
fusion equation is based on the Fick's law = − ∇t D tJ r r( , ) Φ( , ) (Robert
and David, 1960), which implies that the current density tJ r( , ) adjusts
instantaneously to the gradient of the scalar flux trΦ( , ). By the com-
bination of a continuity equation and a constitutive equation (Fick's
first law) one arrives at the diffusion equation (or second Fick's law).
The solution of this constitutive equation shows that even for very small
times, there exists a finite amount of the diffusing substance at large
distances from the origin (Albert and Metzlerz, 1997), that it issues an
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