Accepted Manuscript

Title: Trends in CO₂ conversion and utilization: A review from process systems Perspective

Authors: Ahmad Rafiee, Kaveh Rajab Khalilpour, Dia Milani, Mehdi Panahi

 PII:
 S2213-3437(18)30518-9

 DOI:
 https://doi.org/10.1016/j.jece.2018.08.065

 Reference:
 JECE 2613

To appear in:

Received date:	28-1-2018
Revised date:	11-7-2018
Accepted date:	27-8-2018

Please cite this article as: Rafiee A, Rajab Khalilpour K, Milani D, Panahi M, Trends in CO₂ conversion and utilization: A review from process systems Perspective, *Journal of Environmental Chemical Engineering* (2018), https://doi.org/10.1016/j.jece.2018.08.065

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

TRENDS IN CO₂ CONVERSION AND UTILIZATION: A REVIEW FROM PROCESS SYSTEMS PERSPECTIVE

Ahmad Rafiee¹, Kaveh Rajab Khalilpour^{2,3}, Dia Milani⁴, Mehdi Panahi⁵

¹Cardiff School of Engineering, Cardiff University, Cardiff CF24 3AA, UK

²Faculty of Information Technology, Monash University, Melbourne, VIC 3145, Australia

³Energy Change Institute, College of Physical and Mathematical Sciences, Australian National University, Canberra, ACT 2601, Australia

⁴CSIRO Energy Centre, 10 Murray-Dwyer Circuit, Mayfield West NSW 2304, Newcastle, Australia
 ⁵Chemical Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran

Abstract

Carbon capture and storage (CCS) community has been struggling over the past few decades to demonstrate the economic feasibility of CO_2 sequestration. Nevertheless, in practice, it has only proven feasible under conditions with a market for the recovered CO_2 , such as in the beverage industry or enhanced oil/gas recovery. The research community and industry are progressively converging to a conclusion that CO_2 sequestration has severe limitations for the value proposition. Alternatively, creating diverse demand markets and revenue streams for the recovered almost-pure CO_2 may prevail over CO_2 sequestration option and improve the economic feasibility of this climate change mitigation approach. As such, research in the carbon capture and management field is seen to be shifting towards CO_2 utilization, directly and indirectly, in energy and chemical industries.

In this paper, we critically reviewed the literature on carbon capture, conversion, and utilization routes and assessed the progress in the research and developments in this direction. We discussed both physical and chemical CO_2 utilization pathways and probed the literature in addressing the process integration scenarios and the performance assessment benchmarks. The literature was critically reviewed, and principles of key CO_2 utilization routes were identified.

Abbreviation list

Ar Argon ASU Air separation unit Download English Version:

https://daneshyari.com/en/article/10148780

Download Persian Version:

https://daneshyari.com/article/10148780

Daneshyari.com