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A B S T R A C T

Monitoring car drivers for drowsiness is crucial but challenging. The high inter-individual variability observed in
measurements raises questions about the accuracy of the drowsiness detection process. In this study, we sought
to enhance the performance of machine learning models (Artificial Neural Networks: ANNs) by training a model
with a group of drivers and then adapting it to a new individual. Twenty-one participants drove a car simulator
for 110min in a monotonous environment. We measured physiological and behavioral indicators and recorded
driving behavior. These measurements, in addition to driving time and personal information, served as the ANN
inputs. Two ANN-based models were used, one to detect the level of drowsiness every minute, and the other to
predict, every minute, how long it would take the driver to reach a specific drowsiness level (moderately
drowsy). The ANNs were trained with 20 participants and subsequently adapted using the earliest part of the
data recorded from a 21st participant. Then the adapted ANNs were tested with the remaining data from this
21st participant. The same procedure was run for all 21 participants. Varying amounts of data were used to adapt
the ANNs, from 1 to 30min, Model performance was enhanced for each participant. The overall drowsiness
monitoring performance of the models was enhanced by roughly 40% for prediction and 80% for detection.

1. Introduction

Driving while drowsy is a safety issue, and a major cause of acci-
dents. Numerous fundamental and applicative studies focus on detec-
tion of drowsiness as a way to improve accident prevention. However,
simply detecting drowsiness is not enough: once the driver is drowsy, it
is probably already too late to prevent the accident. The key challenge
is to predict how and when drowsiness will occur, how often it will
occur and who might become drowsy under which conditions.
Prediction refers here to the timely identification of when a given event
will occur within a given range of future states, in our case a given level
of drowsiness. Watson and Zhou (2016) detected the occurrence of
micro-sleep episodes with 96% accuracy and were able to predict the
next micro-sleep between 15 s and 5min in advance, although ob-
viously not the time of occurrence of the first micro-sleep. A recent
study (Jacobé de Naurois et al., 2017) showed that an Artificial Neural
Network (ANN) can not only detect the level of drowsiness but can also
predict, in advance, the time at which this impaired driver’s state will
occur.

Various sources and types of information can be used to estimate the
operator’s functional state. For car driving, measurements must be

easily recordable, not invasive, and reliable. The literature contains a
variety of sources of information (Dong et al., 2011), mainly based on
ocular and eyelid movements (Chen and Ji, 2012; Liu et al., 2009). For
instance, PERCLOS (PERcentage of eye CLOSure, the percentage of
time, generally during one minute, when eyes are closed more than
80%) indicates how long on average the eyes are closed. Physiological
measurements are also often used to assess the driver’s state through
the central and the neuro-vegetative systems, offering the advantage of
being continuously available, objective and fairly direct indicators of
the functional state. The most commonly used physiological signal is
the electroencephalogram (EEG). However, EEG recording during
driving is rather intrusive and constraining (despite continuous tech-
nological advances), which can be a real disadvantage. Electro-
cardiogram (EKG) and respiration measurements are also often used.
Yet it remains difficult to define a direct relationship between physio-
logical features and a given cognitive state, since these physiological
features vary with other states like stress, emotions, workload, physical
effort and fatigue, or with the context.

Finally, driving behavior and performance, such as the standard
deviation of car position relative to lane midline (also termed standard
deviation of lane position (SDLP)) or steering wheel movements,
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(Arnedt et al., 2001; De Valck et al., 2003; Liu et al., 2009; Philip et al.,
2004) are also common measures used to detect the driver’s state.
However, here again, driving performance and activity are not specific
indicators of drowsiness.

To deal with the above limitations, recent research has sought to
improve prediction through complex approaches combining multi-
variate, heterogeneous information via data fusion (Dong et al., 2011;
Samiee et al., 2014). Findings from these studies show that this hybrid
approach can provide better accuracy (Awais et al., 2014).

However, current models need to deal with yet another challenge to
their prediction power. It is now widely recognized that neurobeha-
vioral and cognitive performance vary considerably from one in-
dividual to another (Van Dongen et al., 2004aa; b). In car driving tasks,
according to (Ingre et al., 2006), there is extensive inter-individual
variability in driving behavior and eye behavior. Under similar condi-
tions, individuals’ patterns of drowsiness evolution over time can differ,
and for a given self-declared drowsiness level, markers such as eye blink
duration also vary considerably. Van Dongen et al. (2003) showed that
individuals probably also differ in their vulnerability to sleep depriva-
tion, and that this is partially predictable from individual cognitive
performance without deprivation, i.e. from the individual cognitive
profile. In driving simulator studies, drowsiness is often observed to
develop in differing ways (Thiffault and Bergeron, 2003). Situational
and personality factors, sleeping habits and driving history help explain
why some people fall asleep at the wheel while others do not. This
confirms the need to consider drivers’ traits or profiles to calibrate
systems for the detection and prediction of drowsiness (Jacobé de
Naurois et al., 2017).

Such large inter-individual variability makes creating algorithms
that will perform well for all individuals a challenge. As most studies
use machine-learning algorithms, the difficulty is finding a general
model trained with a limited number of drivers which can then be
applied to the majority of individual drivers (Karrer et al., 2004). One
of the main issues with machine learning is uncertainty about the
generalization of a given model to a new participant. To ascertain
whether an algorithm generalizes well, the dataset is segregated into
either two (training and testing) or three (training, validating and
testing) datasets (in most cases, the segregation is randomly performed
on the full set of recorded data). Thus, it is impossible to be sure that the
algorithm will perform well for another participant whose data is un-
known to the model.

This problem can be approached in different ways. One is to train
the model with as large a population as possible: the more data, the
better the model. However, this method is based on the assumption that
for each new individual, the model has previously encountered a si-
milar individual. This makes it difficult to determine the number of
participants required to deal with the large inter-individual variability.
Furthermore, the level of similarity between two individuals is hard to
quantify. This method would thus be extremely time-consuming, not
only in terms of training the model but also in terms of data collection.
A second solution is to have a specific model for each driver, but this
obviously involves collecting and labeling sufficient data from each
driver as well as training the specific model with these data, another
time-consuming option. A third way is to use methods such as transfer
learning or adaptive learning, which combine the advantages of the two
preceding methods by permitting capitalization on a group of in-
dividuals and personalization for each new individual. In particular,
these methods are applied on Brain Computer Interface systems (Wang
et al., 2015). To detect driver drowsiness, studies applied such techni-
ques on EEG signals (Wei et al., 2015; Wu et al., 2015, 2016) and found
that transfer learning applied to EEG significantly enhances model
performance. Our aim here was to test a similar method based on
adaptive learning but using non-intrusive measurements including
eyelid movements, head movements, EKG, respiration rate, driving
activity and performance, as in our previous study (Jacobé de Naurois
et al., 2017).

The goal of the present study is to enhance the performance of
machine-learning models both in detecting the level of driver drowsi-
ness and in predicting when a given impaired state will be reached, by
first training a model and then adapting it to each new individual. The
model uses Artificial Neural Networks. We hypothesize that training an
ANN with a group of individuals and then personalizing the ANN for a
new individual (whose data were not encountered by the model during
training) will improve the performance of the model for this specific
individual. We also assess the amount of data required to enhance the
generalization performance of the model.

2. Materials and methods

The participants and the protocol, including data collection and
preprocessing, were the same as used for our previous study (Jacobé de
Naurois et al., 2017). Data modeling methods were specifically devel-
oped for the present study.

2.1. Participants

Twenty-one participants were included in the study (mean age
24.09 ± 3.41 years; 11 men, 10 women). Inclusion criteria were: valid
driver’s license for at least 6 months, no visual correction needed to
drive, not susceptible to simulator sickness, as assessed by the Motion
Sickness Susceptibility Questionnaire, Short-form (MSSQ-Short,
Golding, 1998), and an Epworth scale score (assessing susceptibility to
drowsiness) below 14 (Johns, 1991) (for more detail, see (Jacobé de
Naurois et al., 2017)). The following participant information was col-
lected: Epworth scale score (assessing susceptibility to drowsiness
(Johns, 1991)), quality of the previous night’s sleep (on a scale from 1
to 10), caffeine consumption (never, rarely, one or two cups per day,
more than two cups per day), driving frequency (occasionally, several
times a month/a week/a day), distance (kilometers) driven per year
and score on the Horne and Östberg morning/evening questionnaire
(Horne and Ostberg, 1975).

2.2. Protocol

The participants drove for 100 to 110min in a static driving simu-
lator in an air-conditioned room with temperature control set at
24 °Celsius. They drove just after lunchtime, a time considered as risky
in terms of drowsiness (Horne and Reyner, 1999). The road and traffic
were generated with SCANeR Studio®. A webcam located on top of the
central screen of the simulator video-recorded the participants during
the session to establish the ground truth (see below). The (static) si-
mulator, provided by Oktal® and powered with SCANeR Studio® soft-
ware, is made of a real car seat, 3 video screens (24″ in format 16/9
each, forming a tryptic), a steering wheel, pedals and a small screen
(10″) for the dashboard, located just behind the wheel. The driving
environment was displayed at a resolution of 1280×1024 pixels onto
the three forward screens providing a 210° horizontal forward field of
view. A rear screen provided a 60° rear field of view, corresponding to
the normal use of the central rearview and two side mirrors. A stereo
sound system provided simulated engine, road, and traffic sounds. An
example of the field of view is presented on the figure below, which has
been added to Fig. 1. The simulated car had an automatic gearbox, so
the driver had only access to the steering wheel, gas and brake pedals.
At the beginning of the session, the participants drove along a highway
for roughly 90min, then turned off the highway and drove for around
5min to reach a city. Finally, they drove in an urban environment for
roughly 5min. There was no traffic during most of the highway stretch.
The very monotonous environment (without event or traffic) was se-
lected in order to induce drowsiness. Somewhere 2/3 of the way along,
22 cars appeared from the right of the highway, disappearing a few
kilometers later (Fig. 2). This sudden addition of traffic was intended to
change the driver’s level of drowsiness. Rossi et al. (2011)
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