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A B S T R A C T

Occupancy models allow assessing species occurrence while accounting for imperfect detection. As with any
statistical models, occupancy models rely on several assumptions amongst which (i) there should be no un-
modelled heterogeneity in the detection probability and (ii) the species should not be detected when absent from
a site, in other words there should be no false positives (e.g., due to misidentification). In the real world, these
two assumptions are often violated. To date, models accounting simultaneously for both detection heterogeneity
and false positives are yet to be developed. Here, we first show how occupancy models with false positives can be
formulated as hidden Markov models (HMM). Second, benefiting from the HMM framework flexibility, we
extend models with false positives to account for heterogeneity with finite mixtures. First, using simulations, we
demonstrate that, as the level of heterogeneity increases, occupancy models accounting for both heterogeneity
and misidentification perform better in terms of bias and precision than models accounting for misidentification
only. Next, we illustrate the implementation of our new model to a real case study with grey wolves (Canis lupus)
in France. We demonstrate that heterogeneity in wolf detection (false negatives) is mainly due to a hetero-
geneous sampling effort across space. In addition to providing a novel modeling formulation, this work illus-
trates the flexibility of HMM framework to formulate complex ecological models and relax important assump-
tions that are not always likely to hold. In particular, we show how to decompose the model structure in several
simple components, in a way that provides much clearer ecological interpretation.

1. Introduction

Occupancy models (Mackenzie et al., 2006) are commonly used to
infer species occurrence while accounting for imperfect detection
(Bailey et al., 2014; Guillera-Arroita, 2017). These models rely on
species detections and non-detections recorded during surveys repeated
across time and across several spatial sampling units (sites). As with any
statistical models, inferences made from occupancy analyses heavily
rely on several assumptions that should be checked and validated
(Mackenzie et al., 2003, 2006), although in reality this is rarely done
(see however, Mackenzie et al., 2004; Warton et al., 2017).

Here, we focus on two important assumptions. First, there should be
no unmodelled heterogeneity in species detection. In other words, all
heterogeneity should be accounted for with covariates. If ignored,
heterogeneity in detection leads to underestimating occupancy (Royle

and Nichols, 2003; Royle, 2006). Detection heterogeneity can be due to
a heterogeneous sampling effort in space (Louvrier et al., 2018), var-
iation in animal abundance (Royle and Nichols, 2003) or variation in
site characteristics (Mackenzie et al., 2011). Often, site-level covariates
can be measured on the field and incorporated in occupancy models to
account for detection heterogeneity. However, unexplained variation
may remain or measuring the relevant covariates may simply be im-
possible in the field. When we suspect substantial unmodelled hetero-
geneity to occur, we should consider modeling it, either with con-
tinuous latent variables (through normally distributed site random
effects, e.g. Gimenez et al., 2014). Modelling heterogeneity using nor-
mally distributed random effect has long been studied in the field of
theoretical biology (e.g., Perc, 2011). Alternatively, modelling hetero-
geneity can be done using finite mixtures. In finite-mixture models, a
latent variable is defined to assign sites to a mixture components (i.e.,
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groups of heterogeneity) characterized by specific parameters (Royle,
2006; Pledger and Phillpot, 2008). While heterogeneity in detection
probability using mixture models has been long studied in the capture-
recapture (CR) literature (review in Gimenez et al., 2017), less attention
has been given to this issue in occupancy models (Gimenez et al., 2014;
Miller et al., 2015).

A second important assumption of occupancy models is that the
species should not be detected when absent from a site (i.e. no false
positives). False positives occur when the species of interest is detected
at sites where it did not occur, usually as a result of misidentification
(Miller et al., 2013). Several studies have underlined the importance of
accounting for false positives on species distribution (Royle and Link,
2006; Miller et al., 2011, 2013; Chambert et al., 2015). Ignoring false
positives and counting them as true positives causes important biases,
such as overestimating occupancy and colonization probabilities, and
underestimating extinction probability (Royle and Link, 2006;
Mcclintock et al., 2010). Miller et al. (2011, 2013) developed static and
dynamic occupancy models that accommodate both false negatives and
false positives. As example of applications, these models have been used
to estimate occurrence of amphibians (Miller et al., 2011), bats
(Clement et al., 2014), and several large vertebrates in India (Pillay
et al., 2014), as well as occurrence dynamics of wolves in Montana
(Miller et al., 2013).

While several studies have accounted for heterogeneity in occu-
pancy models with false positives by using site-level covariates
(Mcclintock et al., 2010; Ferguson et al., 2015; Miller, 2015), methods
that simultaneously account for both unmodelled heterogeneity
through finite mixtures and false positives have yet to be developed.
Here, we fill this gap and illustrate the use of hidden Markov modelling
(HMM) framework as a powerful tool for further developments aiming
at relaxing occupancy models’ assumptions.

Standard occupancy models can be formulated as HMMs describing
two time-series running in parallel. The first time-series captures the
dynamics of the latent states with the state process following a
Markovian sequence (e.g. site occupied vs. unoccupied); the other time
series models the observation process consisting in detections condi-
tional on the underlying but possibly unknown states (Gimenez et al.,
2014). The originality of our approach is twofold. First, we show how
occupancy models with false positives can be formulated as HMMs.
Second, benefiting from the HMM framework flexibility, we extend
models with false positives to account for unmodelled heterogeneity
using a finite-mixture approach.

To assess the performance of our approach, we performed a simu-
lation study comparing parameter bias and precision in a model ac-
counting for misidentification and heterogeneity vs. a model ac-
counting for misidentification only. To do so, we considered scenarios
with an increasing level of heterogeneity in the probability of false
positive detection. We also used a case study on the grey wolves’ (Canis
lupus) distribution in France to illustrate implementation of the method
in a real-world scenario. Our objectives were (i) to investigate how
detection heterogeneity, when ignored, affects the accuracy of occu-
pancy estimation and (ii) assess the extent at which this heterogeneity
might be explained by sampling effort variability across space.

2. Methods

In the statistical literature, there are three main problems of interest
when using HMM (Rabiner, 1989). In what follows, we review each of
these problems in the context of occupancy models. In the evaluation
problem, we ask what the probability that the observations are gener-
ated by our model is – see Section 2.1. In the decoding problem, we ask
what the most likely state sequence in the model that produced the
observations is – see Section 2.5. In the learning problem, we ask how
we should adjust the model parameters to maximize the likelihood – see
Section 2.3.

2.1. HMM formulation of occupancy models with misidentification

Occupancy models can be viewed as HMM whereby the ecological
states are considered as partially hidden states, i.e. imperfectly ob-
served (Gimenez et al., 2014). Occupancy models incorporating false
positives can also be framed within this approach. The HMM for-
mulation allows flexibility in the model formulation. By decomposing
the occupancy approach into simpler steps, the HMM formulation al-
lows better understanding of the ecological and observation processes.
To account for false positives, we followed the multi-season dynamic
model formulation of Miller et al. (2013). For occupied sites, three
observations can be made: (i) an unambiguous detection which is a true
detection that has been validated, (ii) an ambiguous detection which is
also a true detection but that could not be validated and (iii) no de-
tection. At unoccupied sites, by definition, unambiguous detections
cannot occur, thus, only two possible observations can be made: an
ambiguous detection, which in this case is a false positive detection due
to species misidentification, or no detection. The parameters of interest
are ψ1 the probability of initial occupancy, the probability of local
extinction ε and of colonization γ, the probability of correctly detecting
the species at an occupied site p11, the probability to falsely detect the
species at an unoccupied site p10, and the probability b to classify a
true-positive detection as unambiguous (Miller et al., 2011). The spe-
cification of a HMM is divided in three steps: the vector of initial state
probabilities, the matrix of transition probabilities linking states be-
tween successive sampling occasions and the matrix of observation
probabilities linking observations and states at a given occasion
(Gimenez et al., 2014). We define zi,k the latent state of a site i during
the primary occasion (e.g., season or year) k. At the first primary oc-
casion, k = 1, a site can only be in one of two states (‘unoccupied’ or
‘occupied’), with probabilities in the vector of initial state probabilities:
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where rows describe states at occasion k in, and columns describe states
at k + 1.

Next, we describe the observation process, which is conditional on
occupancy states. We define yi,j,k the observation of a site i during the
secondary occasion (e.g. visit or survey) j during the primary occasion
k. For unoccupied sites, unambiguous detections (yi,j,k=1) do not
occur while ambiguous detections (yi,j,k=2) or no detections (yi,j,k=0)
may occur. For occupied sites, unambiguous detections, ambiguous
detections and no detection can all occur. For the sake of clarity, it is
more convenient to write the observation process as the product of two
matrices. The first matrix summarizes the detection state process con-
ditional on occupancy state (rows) ‘unoccupied’ and ‘occupied’ at k.
Columns describe the following intermediate latent detection states: ‘no
detection’, ‘true positive detection’ and ‘false positive detection’:
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It is important to keep in mind that the true, underlying state (i.e.,
false or true positive) of the detections is unknown. At this stage of the
modeling, we are still dealing with latent state, not with actual data.
The second matrix then summarizes the classification of a true-positive
detection as unambiguous or ambiguous, with probability b and 1-b,
respectively. In this matrix, rows represent the above intermediate
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