Contents lists available at [ScienceDirect](http://www.ScienceDirect.com)

Applied Mathematics and Computation

journal homepage: www.elsevier.com/locate/amc

Spectral analogues of Erdős' theorem on Hamilton-connected graphs

Jia Weiª, Zhifu Youʰ, Hong-Jian Lai^{c,}∗

^a *Department of Mathematics, South China University of Technology, Guangzhou 510640, PR China*

^b *School of Mathematics and Systems Science, Guangdong Polytechnic Normal University, Guangzhou 510665, PR China* ^c *Department of Mathematics, West Virginia University, Morgantown, WV 26506, USA*

a r t i c l e i n f o

Keywords: Spectral radius Hamilton-connected Minimum degree

a b s t r a c t

A graph *G* is Hamilton-connected if for any pair of vertices ν and w , *G* has a spanning (v, w) -path. Extending theorems of Dirac and Ore, Erdős prove a sufficient condition in terms of minimum degree and the size of *G* to assure *G* to be Hamiltonian. We investigate the spectral analogous of Erdős' theorem for a Hamilton-connected graph with given minimum degree, and prove that there exist two graphs $\{L_n^k, M_n^k\}$ such that each of the following holds for an integer $k \geq 3$ and a simple graph *G* on *n* vertices.

(i) If $n \ge 6k$, $\delta(G) \ge k$, and $|E(G)| > \binom{n-k}{2} + k(k+1)$, then *G* is Hamilton-connected if and only if $C_{n+1}(G) \notin \{L_n^k, M_n^k\}.$

(ii) If *n* ≥ max{6*k*, $\frac{1}{2}k^3 - \frac{1}{2}k^2 + k + 4$ }, $\delta(G) \ge k$ and spectral radius $\lambda(G) \ge n - k$, then *G* is Hamilton–connected if and only if $G \notin \{L_n^k, M_n^k\}$.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

We consider finite and simple graphs, with undefined notation and term following [\[3\].](#page--1-0) We normally use *e*(*G*), *n*, δ(*G*) and *A*(*G*) to denote |*E*(*G*)|, |*V*(*G*)|, the minimum degree and the adjacency matrix of a graph *G*, respectively. The largest eigenvalue of $A(G)$, called *the spectral radius* of *G*, is denoted by $\lambda(G)$. Let *H* be a subgraph of a graph *G*, and let $u \in V(G)$. The set of neighbors of a vertex *u* in *H* is denoted by $N_H(u)$. Thus

 $N_H(u) = \{v \in V(H) : uv \in E(G)\}.$

Define $d_H(u) = |N_H(u)|$. A *clique* is a subset of vertices of an undirected graph whose induced subgraph is a complete graph. The maximum size of a clique of a graph is called *clique number*, denoted by $\omega(G)$. For $S \subseteq V(G)$, the *induced subgraph* $G[S]$ is the graph with vertex set *S* and edge set $\{uv \in E(G) \mid u, v \in S\}.$

The disjoint union of two graphs G_1 and G_2 , denoted by $G_1 + G_2$, is the graph with the vertex set $V(G_1) \cup V(G_2)$ and edge set $E(G_1) \cup E(G_2)$. The disjoint union of *k* copies of a graph *G* is denoted by *kG*. The *join* of G_1 and G_2 , denoted by $G_1 \vee G_2$, has *vertex set V*(*G*₁)∪ *V*(*G*₂) and edge set *E*(*G*₁)∪ *E*(*G*₂)∪ {*xy*|*x* ∈ *V*(*G*₁), *y* ∈ *V*(*G*₂)}.

A path (or a cycle, respectively) of a graph *G* is called a *Hamilton path (or Hamilton cycle, respectively)* if it passes through all the vertices of *G*. A graph is *Hamilton-connected* if any two vertices are connected by a Hamilton path. The investigation of hamiltonian graphs has a long history. Dirac and Ore proved the following.

[∗] Corresponding author.

<https://doi.org/10.1016/j.amc.2018.08.005> 0096-3003/© 2018 Elsevier Inc. All rights reserved.

贾

E-mail addresses: 201520122177@mail.scut.edu.cn (J. Wei), youzhf@hotmail.com (Z. You), hjlai@math.wvu.edu (H.-J. Lai).

Theorem 1.1. *Let G be a graph of order n.*

- (i) *(Dirac [\[6\]\)](#page--1-0)* If $\delta(G) \geq \frac{n}{2}$, then *G* is *Hamiltonian.*
- $\binom{14}{14}$ *If* $e(G) > \binom{n-1}{2} + 1$, then *G* is Hamiltonian.

Motivated by these results, Erdős $[7]$ later extended Theorem 1.1 (ii) by utilizing the minimum degree as a new parameter.

Theorem 1.2. (Erdős [\[7\]\)](#page--1-0) Let G be a graph of order n and the minimum degree δ and k be an integer with $1 \leq k \leq \delta \leq \frac{n-1}{2}$. IJ

$$
e(G) > \max\left\{ \binom{n-k}{2} + k^2, \binom{\lceil \frac{n+1}{2} \rceil}{2} + \left\lfloor \frac{n+1}{2} \right\rfloor^2 \right\},\
$$

then G is Hamiltonian.

How many edges can ensure a graph to be Hamilton–connected with a given number of vertices? In 1963, Ore [\[15\]](#page--1-0) answered the question.

Theorem 1.3. *[\[15\]](#page--1-0) Let G be a graph of order n*, *if*

$$
e(G) \ge \binom{n-1}{2} + 3,
$$

then G is Hamilton-connected.

Theorem 1.4. [\(\[16\],](#page--1-0) Theorem 1.8) Let G be a graph of order $n \ge 6k^2 - 8k + 5$ with $\delta(G) \ge k \ge 2$. If $e(G) \ge \frac{n^2 - (2k-1)n + 2k - 2}{2}$, then G is Hamilton-connected unless $cl_{n+1}(G) = K_2 \vee (K_{n-k-1} \cup K_{k-1})$ or $cl_{n+1}(G) = K_k \vee (K_{n-2k-1} \cup \overline{K}_{k-1}).$

Theorem 1.5. [\(\[16\],](#page--1-0) Corollary 1.10) Let G be a graph of order $n \ge \max\{6k^2 - 8k + 5, \frac{k^3 - k^2 + 4k - 1}{2}\}$ with $\delta(G) \ge k \ge 2$. If $\rho(G) \ge$ $n-k$, then G is Hamilton-connected unless $G = K_2 \vee (K_{n-k-1} \cup K_{k-1})$ or $G = K_k \vee (K_{n-2k+1} \cup \overline{K}_{k-1})$.

The results above, as well as the recent advances in [\[9,13,16\],](#page--1-0) motivate the current research. In this paper, we present a spectral analogous of Erdős theorem for a Hamilton-connected graph with a given minimum degree. For a graph *G*, notice that δ (*G*) > 3 is a necessary condition for *G* to be Hamilton-connected. A sufficient condition for a Hamilton-connected graph in terms of spectral radius is also justified. This paper is independently research work with Chen and Zhang's [\(\[16\]\)](#page--1-0) results.

Throughout this paper, for $2 \leq k \leq \frac{n}{2}$, let

$$
L_n^k = K_2 \vee (K_{n-k-1} + K_{k-1}) \text{ and } M_n^k = K_k \vee (K_{n-2k+1} + (k-1)K_1).
$$

In Section 2, extremal sizes of graphs to ensure Hamilton-connectedness are investigated. These will be applied in [Section](#page--1-0) 3 to find an optimal spectral sufficient condition for a graph *G* to be Hamilton-connected.

2. Extremal sizes of Hamilton-connected graphs

Let *X*, *Y* be vertex subsets of a graph *G*. Following [\[3\],](#page--1-0) we adopt these notation: $e(X) = |E(G[X])|$,

$$
E_G[X, Y] = \{xy \in E(G) : x \in X \text{ and } y \in Y\}
$$
, and $e(X, Y) = |E_G[X, Y]|$.

Throughout this section, if *J* is a subgraph of *G* and $v \in V(G) - V(I)$, define $d_I(v) = |E_G[\{v\}, V(I)|]$.

The purpose of this section is to prove two extremal results, namely, Theorems 2.2 and [2.5](#page--1-0) in this section, on the optimal sizes to assure a graph to be Hamilton-connected . We state some known results as our tools.

Theorem 2.1. (Erdős, Gallai, [\[8\]\)](#page--1-0) Let G be a graph of order $n \ge 3$, and u, v are any pair distinct and nonadjacent vertices. If

 $d_G(u) + d_G(v) \geq n + 1$,

then G is Hamilton-connected.

Lemma 2.1. [\[1\]](#page--1-0) Let G be a graph of order $n \ge 3$ with the degree sequence (d_1, d_2, \ldots, d_n) , where $d_1 \le d_2 \le \cdots \le d_n$. If there is no *integer* $2 \le t \le \frac{n}{2}$ *such that* $d_{t-1} \le t$ *and* $d_{n-t} \le n - t$ *, then G is Hamilton-connected.*

Theorem 2.2. Let G be a graph with order n and the minimum degree δ , and let k be an integer with $2 \le k \le \delta$. If

$$
e(G) > \max\left\{ \binom{n-k+1}{2} + k(k-1), \binom{\lceil \frac{n}{2} \rceil + 1}{2} + \lfloor \frac{n}{2} \rfloor \left(\lfloor \frac{n}{2} \rfloor - 1 \right) \right\},\tag{2.1}
$$

then G is Hamilton-connected.

Proof. Suppose that *^G* is not Hamilton-connected. By Lemma 2.1, there exists an integer *^t* such that *dt*[−]¹ [≤] *^t*, where *^k* [≤] *^t* [≤] *ⁿ* $\frac{n}{2}$. Without loss of generality, let $d(v_i) = d_i$ for $1 \le i \le t - 1$. The number of edges which are not incident to any vertex in Download English Version:

<https://daneshyari.com/en/article/10149816>

Download Persian Version:

<https://daneshyari.com/article/10149816>

[Daneshyari.com](https://daneshyari.com)