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The Clenshaw–Curtis-type quadrature rule is proposed for the numerical evaluation of the 

hypersingular integrals with highly oscillatory kernels and weak singularities at the end 

points for any smooth functions g ( x ). 

Based on the fast Hermite interpolation, this paper provides a stable recurrence relation 

for these modified moments. Convergence rates with respect to the frequency k and the 

number of interpolation points N are considered. These theoretical results and high accu- 

racy of the presented algorithm are illustrated by some numerical examples. 
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1. Introduction 

The boundary element method is one of the most frequently used numerical approaches for solving partial differential 

equations (PDEs) arose in many mathematical, physical and engineering problems [7,24,29,32] . It leads the two-dimensional 

PDEs to the one-dimensional Fredholm integral equations of the form 

λu (s ) + 

= 

∫ b 

a 

K(s, x ) 

(x − s ) m 

u (x ) d x = f (s ) , s ∈ (a, b) , m = 1 , 2 , . . . , (1.1) 

where λ is a scalar, u ( x ) is the unknown function and f ( s ) is a given function. The integral in (1.1) is understood as the 

Cauchy principal value for m = 1 and Hadamard finite part for m ≥ 2 [39,54] . 

Much work has focused on the numerical solution for (1.1) with constant kernel K(s, x ) = 1 . Due to the strong singularity, 

the solution can be represented as u (x ) = (1 + x ) α(1 − x ) βg(x ) := ω(x ) g(x ) with α, β ∈ (−1 , 1) and g ( x ) being a smooth 

function on [ a , b ] [3,6,11,13,20] . However, in many fields, such as the electromagnetic scattering and quantum mechanism, 

the kernel functions are usually highly oscillatory with K(s, x ) = e ik (x −s ) , k � 1 [2,5,26,36] , which leads the integral involved 

to 

I(g, s, α, β, k ) = 

= 

∫ 1 

−1 

ω(x ) e ikx 

(x − s ) m 

g(x ) d x, s ∈ (−1 , 1) , −1 < α, β < 1 , (1.2) 

where without loss of generality, the interval [ a , b ] has been transformed to [ −1 , 1] . 
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Numerical computation of (1.2) has been well studied in the case of k = 0 and ω( x ) ≡ 1, for example, the (composite) 

Newton-Cotes method [33,35,51] , the Gauss-type method [10,14,30,31,38,47,48] and other approaches [17] . In fact, these 

methods can be extended to the general cases ω(x ) �≡ 1 . A typical approach is splitting the integrand into a singular part 

and a regular part as follows 

I(g, s, α, β, 0) = 

∫ 1 

−1 

ω(x ) 
g(x ) −∑ m −1 

j=0 
g ( j) (s ) 

j! 
(x − s ) j 

(x − s ) m 

d x + 

m −1 ∑ 

j=0 

g ( j) (s ) 

j! 
= 

∫ 1 

−1 

ω(x ) 

(x − s ) m − j 
d x, (1.3) 

where the first integral can be approximated by some ordinary quadrature rules, such as Gaussian, Fejér or Clenshaw–Curtis 

quadrature rule [31] . While the second part can be evaluated exactly by Erdogan et al. [19] 

−
∫ 1 

−1 

ω(x ) 

x − s 
d x = πω(s ) cot πβ − 2 

α+ β �(β)�(α + 1) 

�(α + β + 1) 
2 F 1 

(
1 , −α − β; 1 − β; 1 − s 

2 

)
, (1.4) 

where 2 F 1 ( a , b ; c ; z ) is the hypergeometric function and its derivatives are [1] 

d 

n 

d z n 
2 F 1 (a, b; c; z) = 

(a ) n (b) n 
(c) n 

2 F 1 (a + n, b + n ; c + n ; z) , (a ) n = a (a + 1) · · · (a + n − 1) . (1.5) 

Nevertheless, this technique can not be applied to the case k � 1 since the quadrature rules will suffer from large number 

of k when approximating the regular part in the right hand side of (1.3) . 

In the case k � 1 and ω( x ) ≡ 1 in (1.2) , Xiang et al. [54] studied the uniform approximation scheme for (1.2) . The principle 

is separating the integrand into oscillating and regular parts, and approximating the regular part by the Chebyshev interpo- 

lation. In [21] , Fang proposed a steepest descent method for the Cauchy principal value of (1.2) ( m = 1 ), which requires the 

analyticity of g ( x ) in a large complex region. Other works on the computation of highly oscillatory integrals with algebraic 

and Cauchy-type singularities are well studied, we refer the readers to [4,16,25,27,40,49,50,55] . 

However, all these numerical methods can not be applied to (1.2) directly due to the existence of oscillation and weak 

singularities at the end points. In this paper, we present a Clenshaw–Curtis-type quadrature rule for the computation of 

these hypersingular integrals (1.2) , particularly for k � 1, which is based on the fast Hermite interpolation schemes and the 

stable recurrence relation for the modified moments defined in (2.6) . Theoretical analysis and numerical experiments show 

the efficiency and accuracy. 

The rest of this paper is organized as follows. In Section 2 , we describe the Clenshaw–Curtis-type quadrature algorithm 

for the integral (1.2) . The fast implementation of the Hermite interpolation and the recurrence relation for the modified 

moments are presented. In Section 3 , the error estimate of the proposed algorithm is given and shows explicitly how it 

depends on the parameters k and N . In Section 4 , the stability of the recursion (2.15) is proved. Finally, these theoretical 

results are illustrated by some numerical examples in Section 5 . 

2. Clenshaw–Curtis-type quadrature rule 

2.1. Description of the algorithm 

The Clenshaw–Curtis quadrature rule has been extensively studied in [8,22,44,53,54] , which interpolates g ( x ) at the 

Clenshaw–Curtis point set X N+1 = 

{ 
x j = cos jπ

N 

} N 
j=0 

in terms of 

g(x ) ≈ P N (x ) := 

N ∑ 

n =0 

′′ c n T n (x ) , (2.1) 

where T n ( x ) is the Chebyshev polynomial of the first kind, the double prime denotes a summation whose first and last terms 

are halved, and the coefficients 

c n = 

2 

N 

N ∑ 

j=0 

′′ g(x j ) T n (x j ) (2.2) 

can be implemented by FFT in O(N log N) operations [9,23,44] . Many numerical results can be found in [45,54] . 

In this paper, we consider a new quadrature rule, Clenshaw–Curtis-type quadrature rule, for the integral (1.2) , which 

approximates the integrand by a Hermite interpolation of the form ̂ P (x j ) = g(x j ) , j = 0 , . . . , N; ̂ P ( j) (s ) = g ( j) (s ) , j = 0 , . . . , m − 1 . (2.3) 

For any fixed s , we choose N such that s / ∈ X N+1 and rewrite the Hermite interpolant as a Chebyshev series 

̂ P N+ m 

(x ) = 

N+ m ∑ 

n =0 

b n T n (x ) . (2.4) 
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