Star edge-coloring of graphs with maximum degree four

Ying Wang ${ }^{\text {a }}$, Yiqiao Wang ${ }^{\text {b }}$, Weifan Wang ${ }^{\text {a,* }}$
${ }^{\text {a }}$ Department of Mathematics, Zhejiang Normal University, Jinhua 321004, China
${ }^{\mathrm{b}}$ School of Management, Beijing University of Chinese Medicine, Beijing 100029, China

A R T I C L E I N F O

Keywords:

Star edge-coloring
Star chromatic index
Maximum degree
Edge-partition

Abstract

The star chromatic index $\chi_{s t}^{\prime}(G)$ of a graph G is the smallest integer k for which G has a proper k-edge-coloring without bichromatic paths or cycles of length four. In this paper, we prove that (1) if G is a graph with $\Delta=4$, then $\chi_{\mathrm{st}}^{\prime}(G) \leq 14$; and (2) if G is a bipartite graph with $\Delta=4$, then $\chi_{\mathrm{st}}^{\prime}(G) \leq 13$.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Only simple graphs are considered in this paper. For a graph G, we use $V(G), E(G), \Delta(G)$ and $\delta(G)$ to denote the vertex set, edge set, maximum degree and minimum degree of G, respectively. If no ambiguity arises in the context, $\Delta(G)$ is simply written as Δ. Two edges $e_{1}, e_{2} \in E(G)$ are said to be distance one if they are adjacent in G, and distance two if they are not adjacent, but there exists an edge $e^{\prime} \in E(G) \backslash\left\{e_{1}, e_{2}\right\}$ adjacent to both of them.

A proper k-edge-coloring of a graph G is a mapping $\phi: E(G) \rightarrow\{1,2, \ldots, k\}$ such that $\phi(e) \neq \phi\left(e^{\prime}\right)$ for any two adjacent edges e and e^{\prime}. The chromatic index $\chi^{\prime}(G)$ of G is the smallest integer k such that G has a proper k-edge-coloring. Similarly, we may define the (vertex) chromatic number $\chi(G)$ of a graph G.

A proper k-edge-coloring ϕ of a graph G is called a strong k-edge-coloring if any two edges of distance at most two get distinct colors. That is, every color class is an induced matching in G. The strong chromatic index of G, denoted $\chi_{s}^{\prime}(G)$, is the smallest integer k such that G has a strong k-edge-coloring.

A proper k-edge-coloring ϕ of a graph G is called a star k-edge-coloring if there do not exist bichromatic paths or cycles of length four. Namely, at least three colors are required to color every path and cycle of length four. The star chromatic index of G, denoted $\chi_{\mathrm{st}}^{\prime}(G)$, is the smallest integer k such that G has a star k-edge-coloring.

As an easy observation, it holds trivially that $\chi_{s}^{\prime}(G) \geq \chi_{s t}^{\prime}(G) \geq \chi^{\prime}(G) \geq \Delta$.
The strong edge-coloring of graphs was introduced by Fouquet and Jolivet [5]. Erdős and Nešetřil raised the following conjecture and showed that the upper bounds are tight:

Conjecture 1. For a graph G,

$$
\chi_{s}^{\prime}(G) \leq \begin{cases}1.25 \Delta^{2}, & \text { if } \Delta \text { is even } \\ 1.25 \Delta^{2}-0.5 \Delta+0.25, & \text { if } \Delta \text { is odd }\end{cases}
$$

Using probabilistic method, Molloy and Reed [14] showed that $\chi_{s}^{\prime}(G) \leq 1.998 \Delta^{2}$ when G has sufficiently large Δ. This result was further improved in [3] to that $\chi_{s}^{\prime}(G) \leq 1.93 \Delta^{2}$.

[^0]In 2008, Liu and Deng [13] first investigated the star edge-coloring of graphs by showing that $\chi_{s t}^{\prime}(G) \leq\left\lceil 16(\Delta-1)^{\frac{3}{2}}\right\rceil$ for any graph G with $\Delta \geq 7$. In 2013, Dvořák, et al. [4] discussed the star chromatic indices of complete graphs and subcubic graphs. The partial results obtained and an open problem are stated as follows:
Theorem 1 [4]. Let G be a subcubic graph. Then
(1) $\chi_{\mathrm{st}}^{\prime}(G) \leq 7$.
(2) If G is cubic, then $\chi_{s t}^{\prime}(G) \geq 4$; and the equality holds if and only if G covers the graph of 3-cube.

Conjecture 2 [4]. Every subcubic graph G has $\chi_{\text {st }}^{\prime}(G) \leq 6$.
As observed in [4], the star chromatic index of $K_{3,3}$ is 6 . Hence the upper bound 6 in Conjecture 2 is the best possible.
Bezegová et al. [1] showed that every tree T has $\chi_{\mathrm{st}}^{\prime}(T) \leq\lfloor 1.5 \Delta\rfloor$ and demonstrated that the upper bound $\lfloor 1.5 \Delta\rfloor$ is tight. In the same paper [1], the authors also verified that every outerplanar graph G satisfies $\chi_{\text {st }}^{\prime}(T) \leq\lfloor 1.5 \Delta\rfloor+12$ and conjectured that the constant 12 can be replaced by 1 . Very recently, the authors of this paper [17] made use of the edgepartition technique to improve this result and to obtain some better bounds on the star chromatic index of planar graphs.

Theorem 2 [17]. Let G be a planar graph. Then
(1) $\chi_{s t}^{\prime}(G) \leq 2.75 \Delta+18$.
(2) $\chi_{s t}^{\prime}(G) \leq\lfloor 1.5 \Delta\rfloor+18$ if G does not contain 4-cycles.
(3) $\chi_{\mathrm{st}}^{\prime}(G) \leq\lfloor 1.5 \Delta\rfloor+13$ if the girth of G is at least 5 .
(4) $\chi_{s t}^{\prime}(G) \leq\lfloor 1.5 \Delta\rfloor+3$ if the girth of G is at least 8 .
(5) $\chi_{s t}^{\prime}(G) \leq\lfloor 1.5 \Delta\rfloor+5$ if G is outerplanar.
(6) $\chi_{\mathrm{st}}^{\prime}(G) \leq 2.25 \Delta+6$ if G is K_{4}-minor free.

For other results on the star edge-coloring of graphs can be seen in [7-9,11,12].
Conjecture 1 asserts that every graph G with $\Delta=4$ has $\chi_{s}^{\prime}(G) \leq 20$. The currently best known upper bound is that $\chi_{s}^{\prime}(G) \leq 21$, due to Huang, Santana and $Y u$ [6]. In this paper, we focus on the star edge-coloring of graphs with maximum degree four. More precisely, we will show that every graph G with $\Delta=4$ has $\chi_{\mathrm{st}}^{\prime}(G) \leq 14$; and moreover $\chi_{\mathrm{st}}^{\prime}(G) \leq 13$ if such graph G is bipartite.

2. Preliminary results

Before proving our main results, we need to introduce a few concepts and preliminary results. An edge-partition of a graph G is a decomposition of G into subgraphs $G_{1}, G_{2}, \ldots, G_{m}$ such that $E(G)=E\left(G_{1}\right) \cup E\left(G_{2}\right) \cup \cdots \cup E\left(G_{m}\right)$ and $E\left(G_{i}\right) \cap$ $E\left(G_{j}\right)=\emptyset$ for all $i \neq j$.
Lemma 1 [16]. If G is a $2 k$-regular graph with $k \geq 1$, then G is 2 -factorizable.
Suppose that H is a subgraph of a graph G. A restricted-strong k-edge-coloring of H on G is a mapping $\phi: E(H) \rightarrow$ $\{1,2, \ldots, k\}$ such that any two edges $e_{1}, e_{2} \in E(H)$ of distance at most two in G get distinct colors. The restricted-strong chromatic index of H on G, denoted $\chi_{s}^{\prime}\left(\left.H\right|_{G}\right)$, is the smallest integer k such that H has a restricted-strong k-edge-coloring on G.

The following useful inequality was established in [17]:
Lemma 2. If a graph G can be edge-partitioned into two graphs F and H, then

$$
\chi_{\mathrm{st}}^{\prime}(G) \leq \chi_{\mathrm{st}}^{\prime}(F)+\chi_{\mathrm{s}}^{\prime}\left(\left.H\right|_{G}\right)
$$

By an easy observation, we conclude that the star chromatic index of graphs possesses the following hereditary:
Lemma 3. If H is a subgraph of a graph G, then $\chi_{\mathrm{st}}^{\prime}(H) \leq \chi_{\mathrm{st}}^{\prime}(G)$.
An edge list L for a graph G is a mapping that assigns a set of colors to each edge of G. Given an edge list L for a graph G, we say that G is star L-edge-colorable if it has a star edge-coloring ϕ such that $\phi(e) \in L(e)$ for every edge e of G. The list star chromatic index, denoted $\mathrm{ch}_{\mathrm{st}}^{\prime}(G)$, of a graph G is the least integer k such that for every edge list L of G with $|L(e)|=k$ for every $e \in E(G), G$ is star L-edge-colorable.

The following Lemma 4 is easily confirmed by a simple discussion.
Lemma 4. Let P_{n} be a path on order $n \geq 2$. Then

$$
\operatorname{ch}_{\mathrm{st}}^{\prime}\left(P_{n}\right)=\chi_{\mathrm{st}}^{\prime}\left(P_{n}\right)= \begin{cases}1, & \text { if } n=2 \\ 2, & \text { if } 3 \leq n \leq 4 \\ 3, & \text { if } n \geq 5\end{cases}
$$

Lemma 5. Let C_{n} be a cycle on order $n \geq 3$. Then

$$
\mathrm{ch}_{\mathrm{st}}^{\prime}\left(C_{n}\right)=\chi_{\mathrm{st}}^{\prime}\left(C_{n}\right)= \begin{cases}3, & \text { if } n \neq 5 \\ 4, & \text { if } n=5\end{cases}
$$

Download Persian Version:
https://daneshyari.com/article/10149820

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: yqwang@bucm.edu.cn (Y. Wang), wwf@zjnu.edu.cn, wwf@zjnu.cn (W. Wang).

