Contents lists available at ScienceDirect

Applied Mathematics and Computation

journal homepage: www.elsevier.com/locate/amc

Star edge-coloring of graphs with maximum degree four

Ying Wang^a, Yiqiao Wang^b, Weifan Wang^{a,*}

^a Department of Mathematics, Zhejiang Normal University, Jinhua 321004, China
^b School of Management, Beijing University of Chinese Medicine, Beijing 100029, China

ARTICLE INFO

Keywords: Star edge-coloring Star chromatic index Maximum degree Edge-partition

ABSTRACT

The star chromatic index $\chi'_{st}(G)$ of a graph *G* is the smallest integer *k* for which *G* has a proper *k*-edge-coloring without bichromatic paths or cycles of length four. In this paper, we prove that (1) if *G* is a graph with $\Delta = 4$, then $\chi'_{st}(G) \le 14$; and (2) if *G* is a bipartite graph with $\Delta = 4$, then $\chi'_{st}(G) \le 13$.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Only simple graphs are considered in this paper. For a graph *G*, we use *V*(*G*), *E*(*G*), Δ (*G*) and δ (*G*) to denote the vertex set, edge set, maximum degree and minimum degree of *G*, respectively. If no ambiguity arises in the context, Δ (*G*) is simply written as Δ . Two edges e_1 , $e_2 \in E(G)$ are said to be *distance one* if they are adjacent in *G*, and *distance two* if they are not adjacent, but there exists an edge $e' \in E(G) \setminus \{e_1, e_2\}$ adjacent to both of them.

A proper *k*-edge-coloring of a graph *G* is a mapping $\phi : E(G) \to \{1, 2, ..., k\}$ such that $\phi(e) \neq \phi(e')$ for any two adjacent edges *e* and *e'*. The *chromatic index* $\chi'(G)$ of *G* is the smallest integer *k* such that *G* has a proper *k*-edge-coloring. Similarly, we may define the (vertex) chromatic number $\chi(G)$ of a graph *G*.

A proper k-edge-coloring ϕ of a graph G is called a *strong k-edge-coloring* if any two edges of distance at most two get distinct colors. That is, every color class is an induced matching in G. The *strong chromatic index* of G, denoted $\chi'_{s}(G)$, is the smallest integer k such that G has a strong k-edge-coloring.

A proper k-edge-coloring ϕ of a graph G is called a *star k-edge-coloring* if there do not exist bichromatic paths or cycles of length four. Namely, at least three colors are required to color every path and cycle of length four. The *star chromatic index* of G, denoted $\chi'_{st}(G)$, is the smallest integer k such that G has a star k-edge-coloring.

As an easy observation, it holds trivially that $\chi'_{s}(G) \ge \chi'_{st}(G) \ge \chi'(G) \ge \Delta$.

The strong edge-coloring of graphs was introduced by Fouquet and Jolivet [5]. Erdős and Nešetřil raised the following conjecture and showed that the upper bounds are tight:

Conjecture 1. For a graph G,

 $\chi_s'(G) \leq \begin{cases} 1.25\Delta^2, & \text{if } \Delta \text{ is even;} \\ 1.25\Delta^2 - 0.5\Delta + 0.25, & \text{if } \Delta \text{ is odd.} \end{cases}$

Using probabilistic method, Molloy and Reed [14] showed that $\chi'_s(G) \le 1.998\Delta^2$ when G has sufficiently large Δ . This result was further improved in [3] to that $\chi'_s(G) \le 1.93\Delta^2$.

* Corresponding author.

https://doi.org/10.1016/j.amc.2018.08.035

E-mail addresses: yqwang@bucm.edu.cn (Y. Wang), wwf@zjnu.edu.cn, wwf@zjnu.cn (W. Wang).

^{0096-3003/© 2018} Elsevier Inc. All rights reserved.

In 2008, Liu and Deng [13] first investigated the star edge-coloring of graphs by showing that $\chi'_{st}(G) \leq \lceil 16(\Delta - 1)^{\frac{3}{2}} \rceil$ for any graph G with $\Delta \ge 7$. In 2013, Dvořák, et al. [4] discussed the star chromatic indices of complete graphs and subcubic graphs. The partial results obtained and an open problem are stated as follows:

Theorem 1 [4]. Let *G* be a subcubic graph. Then

(1) $\chi'_{st}(G) \leq 7$.

(2) If G is cubic, then $\chi'_{st}(G) \ge 4$; and the equality holds if and only if G covers the graph of 3-cube.

Conjecture 2 [4]. *Every subcubic graph G has* $\chi'_{st}(G) \leq 6$.

As observed in [4], the star chromatic index of $K_{3,3}$ is 6. Hence the upper bound 6 in Conjecture 2 is the best possible. Bezegová et al. [1] showed that every tree T has $\chi'_{st}(T) \leq \lfloor 1.5\Delta \rfloor$ and demonstrated that the upper bound $\lfloor 1.5\Delta \rfloor$ is tight. In the same paper [1], the authors also verified that every outerplanar graph G satisfies $\chi'_{st}(T) \leq \lfloor 1.5 \Delta \rfloor + 12$ and conjectured that the constant 12 can be replaced by 1. Very recently, the authors of this paper [17] made use of the edgepartition technique to improve this result and to obtain some better bounds on the star chromatic index of planar graphs.

Theorem 2 [17]. Let G be a planar graph. Then

- (1) $\chi'_{st}(G) \le 2.75\Delta + 18.$
- (2) $\chi'_{st}(G) \leq \lfloor 1.5\Delta \rfloor + 18$ if G does not contain 4-cycles.
- (3) $\chi_{st}^{\prime\prime}(G) \leq |1.5\Delta| + 13$ if the girth of G is at least 5.
- (4) $\chi'_{st}(G) \leq \lfloor 1.5\Delta \rfloor + 3$ if the girth of G is at least 8.
- (5) $\chi'_{st}(G) \leq \lfloor 1.5\Delta \rfloor + 5$ if G is outerplanar. (6) $\chi'_{st}(G) \leq 2.25\Delta + 6$ if G is K_4 -minor free.

For other results on the star edge-coloring of graphs can be seen in [7–9,11,12].

Conjecture 1 asserts that every graph G with $\Delta = 4$ has $\chi'_{c}(G) \leq 20$. The currently best known upper bound is that $\chi'_{s}(G) \leq 21$, due to Huang, Santana and Yu [6]. In this paper, we focus on the star edge-coloring of graphs with maximum degree four. More precisely, we will show that every graph G with $\Delta = 4$ has $\chi'_{st}(G) \le 14$; and moreover $\chi'_{st}(G) \le 13$ if such graph G is bipartite.

2. Preliminary results

Before proving our main results, we need to introduce a few concepts and preliminary results. An edge-partition of a graph G is a decomposition of G into subgraphs G_1, G_2, \ldots, G_m such that $E(G) = E(G_1) \cup E(G_2) \cup \cdots \cup E(G_m)$ and $E(G_i) \cap E(G_i) \cup E(G_i) \cup \cdots \cup E(G_m)$ $E(G_i) = \emptyset$ for all $i \neq j$.

Lemma 1 [16]. If G is a 2k-regular graph with $k \ge 1$, then G is 2-factorizable.

Suppose that H is a subgraph of a graph G. A restricted-strong k-edge-coloring of H on G is a mapping $\phi: E(H) \rightarrow E(H)$ $\{1, 2, \dots, k\}$ such that any two edges $e_1, e_2 \in E(H)$ of distance at most two in G get distinct colors. The restricted-strong chromatic index of H on G, denoted $\chi'_{s}(H|_{G})$, is the smallest integer k such that H has a restricted-strong k-edge-coloring on G.

The following useful inequality was established in [17]:

Lemma 2. If a graph G can be edge-partitioned into two graphs F and H, then

$$\chi_{\rm st}'(G) \leq \chi_{\rm st}'(F) + \chi_{\rm s}'(H|_G).$$

By an easy observation, we conclude that the star chromatic index of graphs possesses the following hereditary:

Lemma 3. If *H* is a subgraph of a graph *G*, then $\chi'_{st}(H) \leq \chi'_{st}(G)$.

An edge list L for a graph G is a mapping that assigns a set of colors to each edge of G. Given an edge list L for a graph G, we say that G is star L-edge-colorable if it has a star edge-coloring ϕ such that $\phi(e) \in L(e)$ for every edge e of G. The list star chromatic index, denoted $ch'_{st}(G)$, of a graph G is the least integer k such that for every edge list L of G with |L(e)| = kfor every $e \in E(G)$, *G* is star *L*-edge-colorable.

The following Lemma 4 is easily confirmed by a simple discussion.

Lemma 4. Let P_n be a path on order $n \ge 2$. Then

$$ch'_{st}(P_n) = \chi'_{st}(P_n) = \begin{cases} 1, & \text{if } n = 2; \\ 2, & \text{if } 3 \le n \le 4; \\ 3, & \text{if } n \ge 5. \end{cases}$$

Lemma 5. Let C_n be a cycle on order $n \ge 3$. Then

$$ch'_{st}(C_n) = \chi'_{st}(C_n) = \begin{cases} 3, & \text{if } n \neq 5; \\ 4, & \text{if } n = 5; \end{cases}$$

Download English Version:

https://daneshyari.com/en/article/10149820

Download Persian Version:

https://daneshyari.com/article/10149820

Daneshyari.com