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a b s t r a c t 

This study demonstrates how analytical solutions for displacement field potentials of de- 

formation in elastic media can be obtained from known vector field solutions for analog 

fluid flow problems. The theoretical basis is outlined and a geomechanical application is 

elaborated. In particular, closed-form solutions for deformation gradients in elastic media 

are found by transforming velocity field potentials of fluid flow problems, using similarity 

principles. Once an appropriate displacement gradient potential is identified, solutions for 

the principal displacements, elastic strains, stress magnitudes and stress trajectories can 

be computed. An application is included using the displacement gradient due to the in- 

ternal pressure-loading of single and multiple wellbores. The analytical results give perfect 

matches with results obtained with an independent discrete element modeling method. 

© 2018 Elsevier Inc. All rights reserved. 

1. Introduction 

Mathematical descriptions of both fluid flow (including flow in porous media) and deformation in elastic media are 

possible with so-called complex potentials [1,2] . Such descriptions capture in the respective media, the spatial change of 

fluid velocity (fluid media) and elastic displacements (elastic media). The classical approach of complex analysis for fluid 

flow splits the complex potential in a stream function (imaginary part) and a potential function (real part). The stream function 

provides the velocity field and associated velocity gradient tensor for every fluid particle in every location. The potential 

function gives the pressure field everywhere in the flow studied. Countless flows can be described by specific stream function 

solutions [3–7] , which all satisfy the Laplace equation. Fig. 1 shows an example [8] of flow past a cylinder with streamlines 

as velocity tangents obtained from a classical stream function ( Fig. 1 a) and pressure contours from the potential function 

( Fig. 1 b). Time-of-flight contours given in Fig. 1 a based on the analytical model closely match those independently modeled 

by a physical laboratory experiment [9,10] with marked fluid particles moving around a falling cylinder ( Fig. 1 c,d). 

Unlike the analytical solutions, the physical laboratory experiment shows streamlines and isochrons affected by experi- 

mental “noise,” such as wall effects due to finite container size (Region A, Fig. 1 c), variable adherence to the fluid bound- 

ary due some slip in places of un-intended lubrication (Region B, Fig. 1 c), and even non-Newtonian effects, such as wider 

wake behind the cylinder (Region C, Fig. 1 c), due to the high molecular weight of the cross-linked polymer fluid used 

[ 11 –13 ]. In short, physical laboratory experiments and computational models, which include both analytical and discrete el- 

ement solutions methods, are complementary. Analytical model descriptions give exact, closed-form solutions, but are often 
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Fig. 1. a: Streamlines for non-inertial flow around a solid cylinder, marked with time-of-flight isochrons (red), based on analytical expressions for a uniform 

far-field flow and an anti-polar point doublet [8] . b: Corresponding pressure highs (red zones) and lows (blue zones). c: Laboratory experiment of a falling 

cylinder with embedded grid acting as streamline markers and time-of-flight contours [9] . Regions labeled A-C are explained in the text. d: Sketch of flow 

markers for the same falling cylinder [10] . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 

this article.) 

limited to isotropic material properties and simple boundary conditions. Advanced discrete element models can handle more 

complexity, but at expense of longer computation time unless coarse grid and mesh suffice, which give only approximate 

solutions. 

When analytical solutions are available for flow problems they offer high resolution results (meshless, gridless) at low 

computation cost. For that reason a revival in stream function applications has been advocated in recent effort s to exploit 

the infinite resolution of closed-form solutions. Examples are flooding studies in hydrocarbon reservoirs [14,15] , flow near 

hydraulically fractured wells [16] , and fluid drainage near multi-fractured horizontal wells with fracture hits [ 17 , 18 ]. Sepa- 

rately, complex potentials and associated stress functions have been developed for elastic deformations to map the stress 

concentrations near internal boundaries [ 19 –21 ]. Stress functions continue to provide closed-form solutions that can be ap- 

plied to quantify the elastic response and possible failure of wellbores at high resolution, locating stress trajectories and 

neutral points of zero deviatoric stress [22,23] . 

Stream functions and stress functions can both be derived from complex potentials, and use similar tools of complex 

analysis. One may attempt a transformation of the stream function for a fluid flow system to a stress function to describe 

a geometrically similar elastic deformation. However, the actual transformation of a stream function to a stress function is 

less straightforward than alleged, and specific examples are rare if not completely absent in scholarly literature. Goodier 

[24] argued that by replacing viscosity with the shear modulus and strain rate with strain, the instantaneous, incompress- 

ible all-viscous and all-elastic problems are mathematically identical. In order to obtain valid similarity solutions for the 

kinematic (velocities /displacements) and dynamic (pressures) quantities of such moving fluids and deformed elastic media, 

the boundary conditions need to be similar (or similarly scalable). In fact, the procedure may be slightly more involved 

than simply replacing viscosity with shear modulus and strain rate with strain. In an elastic continuum, the deformation in 

response to a specific external force is instantaneous and results in a specific combination of finite strain and rigid body ro- 

tation (neglecting the option of volume change due to compressibility). Provided the finite strain is known everywhere, the 

stress scaling may require not only the shear modulus but also the Young modulus, because the deformation may involve 

both pure and simple shear motion. Incompressible, Newtonian fluids, display only shear motion and if scaled for a given 

(shear) viscosity and assuming steady-state flow, the strain-rate in every point remains time-independent (constant). 

This study takes a more fundamental approach and shows how the velocity potential for a suitable flow problem can be 

manipulated to obtain valid solutions of the displacement potential for elastic problems. Closed-form solutions for advanced 
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