Accepted Manuscript

Flow of Eyring-Powell dusty fluid in a deferment of aluminum and ferrous oxide nanoparticles with and Cattaneo-Christov heat flux

S. MamathaUpadhya, C. Mahesha, C.S.K. Raju, S.A. Shehzad, F.M. Abbasi

PII:	S0032-5910(18)30742-3
DOI:	doi:10.1016/j.powtec.2018.09.015
Reference:	PTEC 13689
To appear in:	Powder Technology
Received date:	14 December 2017
Revised date:	28 August 2018
Accepted date:	6 September 2018

Please cite this article as: S. MamathaUpadhya, C. Mahesha, C.S.K. Raju, S.A. Shehzad, F.M. Abbasi, Flow of Eyring-Powell dusty fluid in a deferment of aluminum and ferrous oxide nanoparticles with and Cattaneo-Christov heat flux. Ptec (2018), doi:10.1016/j.powtec.2018.09.015

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Flow of Eyring-Powell dusty fluid in a deferment of aluminum and ferrous oxide nanoparticles with and Cattaneo-Christov heat flux

S. MamathaUpadhya^{1, 2}, Mahesha², C. S. K. Raju³, S.A. Shehzad^{4,*} and F.M. Abbasi⁵ ¹Department of Mathematics, Garden City University, 16th KM.,Old Madras Road, Bangalore-

560049, Karnataka, INDIA.

²Department of Mathematics, University BDT College of Engineering, Davangere, 577004. Karnataka, INDIA

³Department of Mathematics, Gitam University, Karnataka-562163, INDIA

⁴Department of Mathematics, COMSATS University Islamabad, Sahiwal 57000, Pakistan

⁵Department of Mathematics, COMSATS University Islamabad, Islamabad 44000, Pakistan

*Corresponding author Email:ali_qau70@yahoo.com

Abstract

This is a speculative investigation of the magnetohydrodynamic flow of Eyring-Powell liquid under suspension of nano-particles and dust. A simulation is executed by fraternization of Ferrous oxide (Fe₃O₄) and aluminum oxide (Al₂O₃) nanoparticles in Eyring-Powell dusty fluid. Dispersion of ferrous oxide (Fe₃O₄) and aluminum oxide (Al₂O₃) nano-particles in dusty fluid have applications in heat exchanger system, biocompatibility, biosensors, nuclear reactor heating process, detection and cancer treatment, in monitoring stem cells differentiation etc. Ferrous oxide (Fe₃O₄) and aluminum oxide (Al₂O₃) mixtures are substantially useful in optimizing the heat transport occurrences. Implementation of similarity variables leads to the systems of ordinary differential expressions. These nonlinear systems of ODEs are tackled with the use of Runge-Kutta-Fehlberg Scheme (RKFS). The analysis of dimensionless temperature and velocity fields is given via plots. The numerical benchmarks of friction-factors and heat transport rate are for different constraints are given and examined. Obtained results are matched with previously published material and noted to be satisfactory. This model expresses that the rate of heat transportation is more in aluminum oxide nanofluid compared to ferrous oxide nanofluid with existing of viscous variation parameter. The presence of thermal and momentum slips correspond the enhancement in local Nusselt number in case of ferrous oxide nanoparticles when compared to aluminum oxide nanoparticles.

Download English Version:

https://daneshyari.com/en/article/10150618

Download Persian Version:

https://daneshyari.com/article/10150618

Daneshyari.com