Accepted Manuscript

Energy analysis energy cascade dense gas-particle flow wall boundary condition numerical simulation

Mohammad Reza Haghgoo, Donald J. Bergstrom, Raymond J. Spiteri

PII: S0032-5910(18)30740-X

DOI: doi:10.1016/j.powtec.2018.09.013

Reference: PTEC 13687

To appear in: Powder Technology

Received date: 15 March 2018
Revised date: 20 August 2018
Accepted date: 6 September 2018

Please cite this article as: Mohammad Reza Haghgoo, Donald J. Bergstrom, Raymond J. Spiteri, Energy analysis energy cascade dense gas-particle flow wall boundary condition numerical simulation. Ptec (2018), doi:10.1016/j.powtec.2018.09.013

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Energy analysis Energy cascade Dense gas-particle flow Wall boundary condition Numerical simulation

Mohammad Reza Haghgoo^{a*}, Donald J. Bergstrom^a, Raymond J. Spiteri^b

^aDepartment of Mechanical Engineering, University of Saskatchewan, Saskatoon, SK, S7N 5A9, Canada

bDepartment of Computer Science, University of Saskatchewan, Saskatoon, SK, S7N 5C9, Canada

Corresponding author

Email addresses: reza.haghgoo@usask.ca (Mohammad Reza Haghgoo)

Download English Version:

https://daneshyari.com/en/article/10150646

Download Persian Version:

https://daneshyari.com/article/10150646

<u>Daneshyari.com</u>