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A B S T R A C T

By assuming that Young’s modulus and Poisson’s ratio of a linearly elastic and isotropic material vary along the
radial direction in a panel with a circular hole and deformed by a far field uniaxial tensile traction, we first
analytically find the stress concentration factor, K, at the hole. The problem is solved by superposing solutions of
two problems – one of uniform biaxial tension and the other of pure shear. The solutions of the first and the
second problem are, respectively, in terms of hypergeometric functions and Frobenius series. Subsequently, we
analytically study the material tailoring problem for uniform biaxial tension, and give explicit variation of
Young’s modulus to achieve a prespecified K. For the panel loaded by a far field uniaxial tensile traction, we
show that the K can be reduced by a factor of about 8 by appropriately grading Young’s modulus and Poisson’s
ratio in the radial direction. By plotting K versus the two inhomogeneity parameters, we solve the material
tailoring problem for a panel loaded with a far field uniaxial traction. The analytical results should serve as
benchmarks for verifying the accuracy of approximate/numerical solutions for an inhomogeneous panel.

1. Introduction

Even though the mechanical behavior of an inhomogeneous mate-
rial has been studied since 1950’s, there has been tremendous activity
in this field during the last three decades [1–6]. A heterogeneous ma-
terial with continuous spatial variation of material parameters is often
called a functionally graded material (FGM). With the availability of 3-
D printing for manufacturing materials with complex microstructures,
it is now feasible to fabricate structures to have the optimum stress and
strain distributions for enhancing their mechanical properties under
prescribed loads [7,8]. One such problem is controlling the stress
concentration factor, K, around a circular hole in a panel.

It is well known that K at a circular hole in an infinite panel com-
posed of a homogeneous, isotropic and linearly elastic material de-
formed in uniaxial tension equals 3 [9]. For orthotropic materials
Lekhnitskii et al. [10] have deduced K for an infinite plate containing a
circular hole and deformed by remote uniaxial tensile tractions. Based
on Lekhnitskii’s solution of the plane elastostatics problem using com-
plex variables, Britt [11], Tenchev et al. [12] and Xu et al. [13,14],
respectively, found K for anisotropic rectangular panels with centrally
located circular and elliptical cutouts, laminated composites with cir-
cular holes, and composite laminates with either an elliptical hole or
multiple holes.

Authors of Refs. [15–18] employed the finite element method (FEM)
to evaluate stresses in composite laminates with circular holes. Kubair
and Bhanu-Chandar [19] and Enab [20] using the FEM found that K is
significantly influenced by the spatial variation of the material in-
homogeneity. One needs a very fine mesh near the hole and conduct
convergence studies to deduce reasonably accurate values of K that can
be an arduous task.

Huang and Haftka [21], and Cho and Rowlands [22,23] optimized
fiber orientations near a hole to minimize K and increase the load-
carrying capacity of composite laminates. Lopes et al. [24] and Gomes
et al. [25] found fiber orientation angles and their volume fractions
either to minimize the peak stress around cutouts or to maximize the
buckling and the first-ply failure load of composite panels. They pointed
out that the optimum variable-stiffness designs with a central hole can
have nearly the same initial buckling loads as panels with the same
volume fractions of fibers but no hole.

By dividing an inhomogeneous material panel into a series of piece-
wise homogeneous layers and using the method of complex variables,
Yang et al. [26,27], Yang and Gao [28] and Kushwaha and Saini [29]
have shown that when Young’s modulus decreases with the distance
from the hole boundary, K > 3. Mohammadi et al. [30] analytically
found K around a circular hole in an infinite FGM plate subjected to
uniform biaxial tension and pure shear by assuming that both Young’s
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modulus and Poisson’s ratio vary exponentially in the radial direction.
By assuming that Young’s modulus has a power law variation in the
radial direction and Poisson’s ratio is a constant, Sburlati [31] studied
the elastic response of an FGM annular ring inserted in a hole of a
homogeneous plate. Kubair [32] used the method of separation of
variables to find closed-form expressions for stresses and displacements
in FGM plates with and without holes under anti-plane shear loading
and used a non-traditional definition of K.

We note that there are a limited number of analytical studies on the
stress concentration around a circular hole in isotropic FGM panels.
Furthermore, there are no results on material tailoring for reducing K.
We analytical (i) find K at a circular hole in an isotropic FGM panel
under a far field uniaxial tensile traction, (ii) analyze the material tai-
loring problem for uniform biaxial tension loading, and (iii) investigate
the effect of material inhomogeneity parameters on K. For far field
uniform tensile loading, we provide a response function to estimate
inhomogeneity parameters for a desired value of K.

The rest of the paper is organized as follows. Sections 2 and 3, re-
spectively, give the formulation and the solution of the direct problem
in which we analyze deformations of the panel under prescribed far
field surface tractions. Section 3 is divided into three subsections that
provide details of deformations under uniform biaxial tension, pure
shear and uniaxial tension, respectively. In Section 4 we analytically
solve the material tailoring problem for uniform biaxial tension
loading. Section 5 provides numerical results that establish the accu-
racy and the convergence of the series solution for the pure shear
loading, and delineate effects of the variation of the material properties
on K and stress distributions. Conclusions of the work are summarized
in Section 6.

2. Formulation of the direct problem

We consider an isotropic and linearly elastic FGM panel with a
circular hole of radius a subjected to a far-field uniaxial traction σ0, as
shown in Fig. 1(a). We analyze how the radial variation in Young’s
modulus and Poisson’s ratio affects the stress concentration at the hole
periphery for plane stress deformations of the panel. We solve the
problem by superposing solutions of two problems – biaxial tension and
pure shear, as shown in Fig. 1(b) and (c).

We use cylindrical coordinates (r, θ) with origin at the hole center to
describe the panel deformations. In the absence of body forces, equili-
brium equations are
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where σrr , σθθ and σrθ are stress components. Hooke’s law relating
stresses to infinitesimal strains, ε ε ε, ,rr θθ rθ, is
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We assume that Young’s modulus, E r( ), and Poisson’s ratio, v r( ),
are given by either

(i) general power-law variations
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, β β,1 2 and γ γ,1 2

( β β γ γ1 { , , , } 11 2 1 2− < < ) are real numbers, and n is a negative integer
which helps find an analytical solution of the problem. For a homo-
geneous material, β β γ γ 01 2 1 2= = = = . The variations of E with r a/ for
n 3, 5= − − and β 0.9, 0.91 = − depicted in Fig. 2(a) reveal that
E r E( )/ →∞ 1 as r a/ →5. Similarly, the variation of E with r a/ for
γ 0.9, 0.91 = − depicted in Fig. 2(b) implies that E r E( )/ →∞ 1 as r a/ →50.

The far-field boundary conditions for the biaxial tension and the
pure shear problems are:
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and boundary conditions at the hole periphery are

σ a θ σ a θ( , ) 0, ( , ) 0.rr rθ= = (4c)

When solving the problem for stresses, we employ the following
compatibility equation:
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3. Solution of the direct problem

We analytically solve the problem for the uniform biaxial tension in
subsection 3.1, and use the Frobenius series to analyze the problem for
pure shear loading in subsection 3.2. By superposing solutions of these
two problems, we obtain the solution for the uniaxial tension problem
in subsection 3.3.

3.1. Uniform biaxial tension

We note that the problem geometry, the material properties and the

Fig. 1. Schematic sketch of a panel with a circular hole subjected to a uniform far-field tensile traction, and its split into two problems.
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