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A B S T R A C T

The article deals with a recurrent neurodynamic model of the neuron with a broad class of activation functions,
including sigmoidal, stepwise, bounded linear and other ones. We consider the activation characteristic of the
neuron, which is the dependence of the output signal on the input one. We demonstrate analytically that re-
gardless of the choice of a particular activation function from the class of functions under consideration, the
activation characteristic will have a characteristic property. When the value of the so-called modulating para-
meter is varied, the type of this characteristic will change from a function close to the selected activation
function to a curve containing hysteresis loops. In other words, through the modulating parameter, the neuron
model can be tuned to operate in monostable mode or one of the admissible multi-stability modes. We de-
monstrate how to determine the bifurcation points of the regime change, the corresponding boundaries of the
multi-stability regions, and the conditions for finding solutions in them. The results of numerical experiments
confirm the validity of the conclusions.

Introduction

One of the main tasks in the field of neural network modeling is to
search for and develop new data processing methods as one of the ways
to solve the problem of intelligent autonomous systems (Tiumentsev,
2017). Such systems should have the properties of high autonomy and
adaptability to provide full or partial replacement of the human op-
erator in various control and information processing systems, for ex-
ample in monitoring systems based on the use of flying, ground-surface,
and underwater unmanned vehicles.

Existing neurophysiological studies of working memory show
(Egorov, Hamam, Fransén, Hasselmo, & Alonso, 2002; Egorov,
Unsicker, Bohlen, & Halbach, 2006; Winograd, Destexhe, & Sanchez-
Vives, 2008), that brain neurons can demonstrate persistent graded
activity. Some authors have proposed the appropriate biologically
based models of neurons (Goldman, Levine, Major, Tank, & Seung,
2003; Teramae & Fukai, 2005; Fransén, Tahvildari, Egorov, Hasselmo,
& Alonso, 2006) with this property. These results were achieved due to
the application of the hysteresis effect (Krasnosel’skii & Pokrovskii,
2012), which ensures that the models have the required multi-stability
property.

In this regard, some authors have attempted to use hysteresis
models of neurons in the implementation of artificial neural networks.

In particular, the article (Tsuboshita & Okamoto, 2009; Okamoto, 2011)
demonstrates how the representation of patterns in the form of con-
tinuous attractors in contrast to the conventional approach with dis-
crete attractors can be formed in a network made up of this type of
neurons. This method has successfully solved the problem topic-de-
pendent document retrieval, surpassing the quality of some of the ex-
isting methods. Also, in Jin’no (2009) was solved 2-colorable graph
coloring problem, using the hysteresis model of the neuron, as well as in
Prostov and Tiumentsev (2015a) a neural network model of the finite
state machine was built. We should note that attempts to apply hys-
teresis neurons have been made earlier, for example, in Yanai and
Sawada (1990), where the authors used this kind of neurons in the
associative Hopfield network. However, as was shown later in
Tsuboshita and Okada (2010), some conclusions about the advantages
of the resulting network were wrong.

As part of the problem of constructing a neural network model of
context-dependent pattern recognition (Prostov & Tiumentsev, 2013)
we also proposed a model of hysteresis neuron, discussed in detail in
Prostov and Tiumentsev (2015b). In this paper, we showed that a
simple dynamic model of a recurrent neuron could demonstrate both
mono-stability and bi-stability, as well as tri-stability. In this case, we
can control the transition from one state to another through a global
modulating parameter. Besides, we demonstrated how the obtained
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properties of the model could be applied to increase the robustness of
the network, as well as to identify temporal correlations between the
recognized patterns. However, we considered in Prostov and
Tiumentsev (2015b) the model of neuron with a specific activation
function, which is shown in Fig. 1a. In this regard, we attempt to
generalize the model of neuron proposed earlier by considering a whole
family of activation functions, as well as highlighting the general
properties that the model will have when using a particular activation
function.

Model of the neuron

The following system of equations determines the formal model of a
neuron considered in this paper:

⎧
⎨⎩

= + −
=

du dt αy i μu
y s h u θ

w x/ ( , ) ,
( ( , )), (1)

where �∈u is the potential of the neuron (internal state), ∈y [0;1] is
the frequency of the neuron (output signal), �∈w M is the weighting
vector, �∈x M is the input pattern (input signal), ∈ +∞α [0; ) is the
weight coefficient of the recurrent connection, μ is the dissipation
constant characterizing the rate of decrease of the potential, and

∈ +∞θ (0; ) is the modulating parameter of the neuron, changing its
activation characteristic, i.e. the dependence of the output signal on the
input signal. Next, we show that the parameters α μ, and θ are inter-
related, so, for certainty, we assume that the values of the first two
parameters are selected and stated in advance, and the value of the last
one is variable.

We introduce the function of external excitation � � �× →i: M M to
generalize the method of transforming the input signal. In the particular
case, this function can be, for example, a scalar product of vectors or
some other vector measure. Next, for brevity, we will denote it by the
letter i, omitting the arguments, but implying their presence.

The function of modulation � �× +∞ →h: (0; ) transforms the po-
tential of the neuron u in accordance with the value of modulating
parameter θ as follows:

=h u θ u θ( , ) / . (2)

The function of activation � →s: [0;1] transforms the modulated
potential of the neuron u to the output value y. As we said earlier, we
will consider a whole class of activation functions, called the S-class, i.e.

∈s S. The S-class itself is defined as the set of nondecreasing bounded
piecewise smooth functions defined on the whole set of real numbers:
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For certainty, we denote the set of discontinuity points of the function
itself as the set R, i.e. � �∈ ⧹s R( )0 , and we assume that
∀ ∈ = +→− →+r R s r s x s x( ) 0.5·lim ( ) 0.5·lim ( )x r x r . Also note that the
values of the lower and upper bounds (respectively, values 0 and 1) we
choose for the convenience of working with the output variable y. These
bounds do not limit the class of functions considered in the sense that
any function which having other limit values, but satisfying the re-
maining conditions, can be transformed to the equivalent function of S-
class by applying the appropriate scaling operator. Thus, as noted
earlier, the functions common in the neural network models such as
sigmoidal, stepwise, and bounded linear functions can be referred to the
S-class of functions (see Fig. 1b).

Equilibrium points of the model

To find the stable equilibrium points of the neuron model, we
simplify the system (1) by eliminating the explicit entry of the output
variable y into it:

= + −du dt α s h u θ i μu/ ( ( , )) . (4)

We introduce the variable =z u θ/ and expand the function h u θ( , ),
renaming the right side of the resulting equation as a function F z( ) and
equating it to zero:

= + − =F z α s z i μθz( ) ( ) 0. (5)

Then the roots of this equality will set the equilibrium points of the
system (1). Based on the expression (2), the corresponding output va-
lues of the model will be determined by the relationship =∗ ∗y s z( )i i . The
stability of points will be determined from the condition that for

′ <∗F z( ) 0i the point will be stable, and for ′ >∗F z( ) 0i it will be un-
stable. Accordingly, if at some point the derivative of the function F z( )
is zero or not defined, then additional studies are needed. However, we
will not consider this issue in detail, since it is not the primary subject of
this paper.

The subset of S-class functions, for which it is possible to obtain the
solution to the equality (5) analytically, is very small. In general, we
have to evaluate the solution and investigate its properties numerically
or graphically. It will be more convenient to search for the solution if
we rewrite the equality (5) as follows:

= − +i α s z μθz( ) , (6)

which allows us to graphically depict the activation characteristic of the
neuron, taking into account the dependence of the input variable x on
the value i and the dependence of the output variable y on the value z.

For example, the graphical solutions of the (1) system in various
planes in the case of using the sigmoid activation function are shown in
Fig. 2: (a) under the condition ⩽α μθ4 , when there exists a unique and
stable solution ∗y ; (b) under the condition >α μθ4 , when there exists
one unstable ∗y2 and two stable solutions ∗y1 and ∗y3 . As we can see,
depending on the values of the parameters, the neuron will perform two
qualitatively different types of transformation of the external excitation
i. In the first case (a) there is a continuous nonlinear mapping quali-
tatively corresponding to the properties of the sigmoid function. In the
second case, (b) the map acquires a jump-like, trigger character at the
points +i and −i . Moreover, in the interval ∈ − +i i i( ; ) the domain of ex-
istence of two solutions is formed, and the convergence to one of them
depends on the initial conditions, i.e., in this area, there is a so-called
hysteresis loop (Krasnosel’skii & Pokrovskii, 2012). Thus, according to
bifurcation analysis, we have an assembly type catastrophe (Zeeman,
1977) concerning the parameters θ and i in the system. The bifurcation

Fig. 1. The activation functions of the S-class: (a) considered in (Prostov &
Tiumentsev, 2015b); (b) sigmoidal (solid line), stepwise (dashed line) and a
limited linear (dash-dotted line).
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