

Available online at www.sciencedirect.com

ScienceDirect

FUZZY sets and systems

Fuzzy Sets and Systems $\bullet \bullet \bullet (\bullet \bullet \bullet \bullet) \bullet \bullet \bullet - \bullet \bullet \bullet$

www.elsevier.com/locate/fss

Short communication

On probabilistic ψ -contractions in Menger probabilistic metric spaces $^{\frac{1}{2}}$

Dingwei Zheng a, Pei Wang b,*

Received 14 October 2016; received in revised form 9 February 2018; accepted 11 February 2018

Abstract

In this paper, we prove some equivalence for probabilistic ψ -contractions in Menger probabilistic metric spaces, by which we answer Open question 3 in Mihet and Zaharia (2016) [11] affirmatively. © 2018 Published by Elsevier B.V.

Keywords: Fixed point; Probabilistic ψ -contraction; Menger probabilistic metric spaces

1. Introduction

There are several kinds of probabilistic contractions such as probabilistic φ -contractions [4,8], probabilistic $(\varphi, \varepsilon - \lambda)$ -contractions [6,9], probabilistic (φ, b_n) -contractions [7,10] and probabilistic ψ -contractions [2,3] on Menger probabilistic metric spaces. Some fixed point theorems for these probabilistic contractions are obtained (see [11] and the references therein).

Definition 1.1 ([4,8]). Let (X, F, *) be a Menger probabilistic metric space. A mapping $T: X \to X$ is called a probabilistic φ -contraction if it satisfies the following condition:

$$F_{Tx,Ty}(\varphi(t)) \ge F_{x,y}(t), \forall x, y \in X, \forall t > 0,$$

where $\varphi:[0,\infty)\to[0,\infty)$ is a gauge function.

Denote Φ the class of gauge functions $\varphi : [0, \infty) \to [0, \infty)$ satisfying: $0 < \varphi(t) < t$ and $\lim_{n \to \infty} \varphi^n(t) = 0$ for all t > 0.

E-mail addresses: dwzheng@gxu.edu.cn (D. Zheng), 274958670@qq.com (P. Wang).

https://doi.org/10.1016/j.fss.2018.02.011

0165-0114/© 2018 Published by Elsevier B.V.

^a College of Mathematics and Information Science, Guangxi University, Nanning, Guangxi 530004, PR China

^b School of Mathematics and Information Science, Yulin Normal University, Yulin, Guangxi 537000, PR China

^{*} This research is supported by NSFC (Nos. 11461002, 11461003) and Guangxi Natural Science Foundation (2016GXNSFAA380003, 2016GXNSFAA380317).

Corresponding author.

D. Zheng, P. Wang / Fuzzy Sets and Systems ••• (•••) •••-••

And denote Φ_{ω} the class of gauge functions $\varphi:[0,\infty)\to[0,\infty)$ satisfying: for each t>0 there exists $r\geq t$ such that $\lim_{n\to\infty}\varphi^n(r)=0$.

Obviously, $\Phi \subset \Phi_{\omega}$ and the inclusion is strict.

For probabilistic φ -contractions, Jachymski in [8] obtained the following result:

Theorem 1.2 ([8]). Let (X, F, *) be a complete Menger probabilistic metric space with * of H-type. If T is a probabilistic φ -contraction with $\varphi \in \Phi$, then T is a Picard mapping.

In 2015, Fang [4] obtained the following theorem as a generalization of Theorem 1.2.

Theorem 1.3 ([4]). Let (X, F, *) be a complete Menger probabilistic metric space with * of H-type. If T is a probabilistic φ -contraction with $\varphi \in \Phi_{\omega}$, then T is a Picard mapping.

Definition 1.4 ([2,3]). Let (X, F, *) be a Menger probabilistic metric space. A mapping $T: X \to X$ is called a probabilistic ψ -contraction if it satisfies the following condition:

$$F_{Tx,Ty}(t) \ge F_{x,y}(\psi(t)), \forall x, y \in X, \forall t > 0.$$

where $\psi:[0,\infty)\to[0,\infty)$ is a gauge function.

Now we give three classes of gauge functions which will be used in the next.

```
Denote \Psi = \{ \psi : [0, \infty) \to [0, \infty) | \psi(t) > t, \lim_{n \to \infty} \psi^n(t) = \infty, \forall t > 0 \}.
```

$$\Psi_1 = \{ \psi : [0, \infty) \to [0, \infty) | \lim_{n \to \infty} \psi^n(t) = \infty, \forall t > 0 \}.$$

$$\Psi_{\omega} = \{ \psi : [0, \infty) \to [0, \infty) | \forall t > 0, \exists r \in (0, t] \text{ such that } \lim_{n \to \infty} \psi^n(r) = \infty \text{ and } \psi^{-1}(0) = 0. \}$$

In 2016, Mihet and Zaharia [11] improved several fixed point results concerning probabilistic $(\varphi, \varepsilon - \lambda)$ -contractions, probabilistic (φ, b_n) -contractions and probabilistic ψ -contractions. They obtained the following results:

Theorem 1.5 ([11]). Let (X, F, *) be a complete Menger probabilistic metric space with * of H-type and φ : $[0, \infty) \to [0, \infty)$ be a function with the properties: i) $\varphi((0, 1)) \subset (0, 1)$; ii) $\lim_{n \to \infty} \varphi^n(t) = 0$ for all t > 0. Then every probabilistic $(\varphi, \varepsilon - \lambda)$ -contraction is a Picard mapping.

Theorem 1.6 ([11]). Let (X, F, *) be a complete Menger probabilistic metric space with * of H-type and T be a probabilistic ψ_{ω} -contraction with $\psi_{\omega} \in \Psi_{\omega}$. Then T is a Picard mapping.

Obviously, Theorem 1.6 is a generalization of Theorem 1.7.

Theorem 1.7 ([2,3]). Let (X, F, *) be a complete Menger probabilistic metric space with * of H-type and T be a probabilistic ψ -contraction with $\psi \in \Psi$. Then T is a Picard mapping.

At the end of paper [11], Mihet and Zaharia raised several questions. Two of these questions are the followings:

Open question 1: Does Theorem 1.5 remain true when $\varphi \in \Phi_{\omega}$?

Open question 3: Is it possible for any probabilistic ψ_{ω} -contraction T with $\psi_{\omega} \in \Psi_{\omega}$, to find $\psi \in \Psi$ such that T is a probabilistic ψ -contraction? That is, are Theorem 1.6 and Theorem 1.7 equivalent?

Just recently, Gregori et al. [5] proved the following theorem which showed that Theorem 1.2 and Theorem 1.3 are equivalent (see also [1]).

Theorem 1.8. Let (X, F, *) be a Menger probabilistic metric space and $T: X \to X$ be a mapping. Then T is a φ -contraction for some $\varphi \in \Phi$ if and only if T is a φ_{ω} -contraction for some $\varphi_{\omega} \in \Phi_{\omega}$.

That is, in the framework of Menger spaces the class of probabilistic φ_{ω} -contractions for $\varphi_{\omega} \in \Phi_{\omega}$ coincides with the class of probabilistic φ -contractions for some $\varphi \in \Phi$. Using the same techniques of [5], **Open question 1** can be

2

Download English Version:

https://daneshyari.com/en/article/10150960

Download Persian Version:

https://daneshyari.com/article/10150960

<u>Daneshyari.com</u>