Accepted Manuscript

L-concept lattices with positive and negative attributes: Modeling uncertainty and reduction of size

Eduard Bartl, Jan Konecny

PII: \$0020-0255(18)30675-3

DOI: https://doi.org/10.1016/j.ins.2018.08.057

Reference: INS 13901

To appear in: Information Sciences

Received date: 30 October 2017 Revised date: 6 July 2018 Accepted date: 25 August 2018

Please cite this article as: Eduard Bartl, Jan Konecny, L-concept lattices with positive and negative attributes: Modeling uncertainty and reduction of size, *Information Sciences* (2018), doi: https://doi.org/10.1016/j.ins.2018.08.057

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

L-concept lattices with positive and negative attributes: Modeling uncertainty and reduction of size

Eduard Bartl^{1,*}, Jan Konecny¹

Data Analysis and Modeling Lab
Dept. Computer Science, Palacky University, Olomouc
17. listopadu 12, CZ-77146 Olomouc
Czech Republic

Abstract

In our previous works, we introduced an extension of formal fuzzy concept analysis where attributes were considered as a positive and negative information based on user input. In the present paper, we show that the extension is naturally capable to model uncertainty and we describe a general method to increase that uncertainty in a parametric way. Furthermore, we demonstrate that two methods of concept lattice size reduction, which were thoroughly studied in formal fuzzy concept analysis, become instances of the general method when adapted to our extension.

Keywords: Fuzzy logic, formal concept analysis, negative information, uncertainty, linguistic hedges, factorization by similarity.

1. Introduction

Dubois & Prade [21] directly call for possibilistic approaches in formal fuzzy concept analysis. We demonstrate, that our recently proposed extension of formal concept analysis [4] is naturally capable for modeling uncertainty of object-attribute incidences and, consequently, uncertainty of concepts. Specifically, the extension assumes two truth degrees for each incidence—in what degree the incidence is sure (positive information) and in what degree the incidence is possible (negative information). The uncertainty of the incidence is represented by an interval between the two truth degrees. This is in accordance with possibility theory as the operators which handle the two kinds of truth degrees correspond with fuzzy necessity and fuzzy possibility measures [9, 20, 35, 36].

Furthermore, we argue that increasing uncertainty naturally leads to a reduction of the size of the concept lattice, as its formal concepts become less

^{*}Corresponding author

Download English Version:

https://daneshyari.com/en/article/10150972

Download Persian Version:

https://daneshyari.com/article/10150972

<u>Daneshyari.com</u>