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A B S T R A C T

Temporal dependency plays a fundamental role in nonlinear generative models for capturing temporal features.
One such model, the conditional restricted Boltzmann machine (CRBM), learns these temporal dependencies by
considering the visible variables in the previous time slice as additional fixed inputs so that static and temporal
features can be captured simultaneously to generate new human motions. However, the temporal dependencies
in the CRBM fail to describe various common equilibrium postures in human motion. In this paper, we present
cross-correlation as a new representation for modeling temporal dependencies by introducing the Pearson
correlation coefficient. We also propose an approach to enhance the discrimination of the CRBM for various
human motions by incorporating cross-correlation and temporal dependency features. The experimental results
on benchmark databases demonstrate that the proposed method not only retains all the merits of the CRBM, such
as exact inference and efficient learning, but also greatly improves the model’s ability to blend motion styles and
achieve smooth transitions between various motion segments.

1. Introduction

Modeling human motion has numerous applications, such as
tracking, activity recognition, style and content separation, person
identification, computer animation and synthesis of new motions [1–5].
Human motion is often represented in time sequential sensor data, with
high dimensionality, much noise and extremely complex temporal de-
pendencies. Traditional modeling methods for human motion include
linear dynamical systems [6–8], hidden Markov models [9,10], auto-
regression models [11,12], and spatio-temporal feature points [13,14].
Estimated parameters can be used as features for performing classifi-
cation in these methods. However, traditional shallow methods, which
only contain a small number of nonlinear operations, do not have the
capacity to model complex, high-dimensional, and noisy real-world
time-series data accurately [5].

Deep learning is leading to major advances in solving problems that
have resisted the best attempts of the artificial intelligence community
for many years [15]. Deep learning is good at capturing complex
structures in high-dimensional data. For many sequence tasks (e.g.,
voice [16], video recognition [17,18], medical sequence data [19–21]),
deep learning has been shown to be effective in determining good re-
presentations and classifiers [22–24]. Many algorithms for modeling
time-series data, such as conditional restricted Boltzmann machines

(CRBMs) [25,26], gated CRBMs [27], factored CRBMs (FCRBMs) [11],
temporal restricted Boltzmann machines (TRBMs) [28], recurrent
TRBMs (RTRBMs) (RTRBMs) [29], structured RTRBMs [30], recurrent
neural networks [31–33], and temporal sigmoid belief networks [34],
have been developed. Among these variants of restricted Boltzmann
machine (RBM)-based methods, the CRBMs may be the first model for
sequence modeling. It has been successfully applied in collaborative
filtering, classification and motion modeling. Inspired by this model,
many successors such as the FCRBM and RTRBM have been proposed.

The CRBM learns static features from sample frames. Moreover, it
learns temporal features from these samples and then generates new
sequences in which the new frames resemble the training frames. The
core of the CRBM lies in temporal features, the essence of which is the
structural features of the object in the frames. However, it fails to de-
scribe human structures in equilibrium, which is very common in
human motion, such as walking, striding, running, and walking with
running. In particular, in real-world data there are always several dif-
ferent motions in the same video in which the human body structure is
in a state of equilibrium. However, it is difficult for the CRBM to dis-
tinguish various types of motion in equilibrium because the descrip-
tions provided by the model are always the same or similar.

The traditional CRBM for time-series modeling only depends on the
structure of the object, and does not consider correlations between
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temporal objects. The Pearson correlation coefficient is used to quan-
titatively describe the degree of relatedness between two variables. It
has been widely used in temporal data processing [35–37]. The Pearson
correlation coefficient allows the temporal correlation between two
Gaussian distributed variables to be measured.

In this paper, we first analyze the deficiencies of temporal de-
pendencies in the CRBM, and then propose cross-correlation features
based on the Pearson correlation coefficient. Furthermore, we obtain
cross-correlation and temporal dependency (CCTD) features by com-
bining cross-correlation features and temporal dependencies, and si-
mulate the behavior of humans by applying the CCTD-based features to
the CRBM model. Cross-correlation can describe joints which allow
vigorous styles in motions, such as the raised foot in walking or the bent
knee in jumping. This idea is consistent with spatio-temporal interest
points (STIPs)-based methods [14]. However, STIPs-based methods
only use manually designed STIPs to extract underlying features rather
than learning spatio-temporal features automatically. Moreover, com-
pared with the traditional CRBM, the CCTD-based CRBM (CCTD-CRBM)
enhances temporal representations using the intensity of actions to
capture temporal dependency features from different motions. Our
experiments show that the proposed algorithm may help the CRBM to
be a better generation model.

The remainder of this paper is organized as follows: In Section 2, we
state some preliminaries and notations. Section 3, we present our mo-
tivation. In Section 4, we introduce CCTD features for temporal mod-
eling. In Section 5, we describe the experiments conducted to examine
the effectiveness of the proposed method. Finally, in Section 6,we
conclude this paper.

2. Notations and preliminaries

An RBM [38–41] is an undirected graph that consists of visible units
= ∈v v( ) ,j j M hidden units = ∈h h( ) ,i i N and weights = ∈ ∈W W( )ji j M i N, that

connect visible and hidden units, where M is the number of visible units
and N is the number of hidden units. In an RBM, the joint distribution of
the configuration (v, h) is given by
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where ɛ(v, h) is the energy of configuration (v, h), defined as
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where vj and bj are the status and bias of visible unit j, respectively, and
hi and ci are the status and bias of hidden unit i, respectively.

A CRBM is a modified RBM for time-series data. The status of the
visible and hidden layers in a CRBM at time step t correspond to visible
units v(t) and hidden units h(t) respectively. There are also undirected
weights that connect the visible and hidden layers; however, there are
no connections within a layer, as in an RBM. Thus, a CRBM can capture
static features at time step t. More importantly, there are S previously
visible layers, which indicate the temporal relationships between the
previous samples and current sample. Connection ∈ …−B s S( [1, ])t s( )

between the previously visible −t s layer and hidden layer is used to
map the temporal features of the −t s time step, where S is the number
of previous frames (objects) that we expect the CRBM to learn.
Connection −A t s( ) between the previously visible −t s layer and visible
layer is used to add individual features so as to generate continuous
individual frames (Fig. 1 (a)). Because the frame data are continuous,
units in the CRBM should be linear and real-valued with noise. In
CRBMs, the joint distribution of any configuration between the hidden
and visible layers at time step t is defined by the log-likelihood:
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where VConi and HConj are the impact of the temporal features on
visible unit i and hidden unit j, respectively; ci and bj are the bias of
visible unit i and hidden unit j, respectively; wij is the symmetrical
weight; and σi is the standard deviation of Gaussian noise of the visible
units. The conditional distribution can be obtained as follows:
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where f(.) is the sigmoid function, and � �μ( , ) is a Gaussian dis-
tribution. Gradient descent is also used in CRBM learning, and the
contrastive divergence (CD) method is used for gradient approximation.

In the CRBM, the impacts of the temporal features HConj and VConi

Fig. 1. Architecture of conditional restricted Boltzmann machine (CRBM). (a) One-level model. (b) Two-level model.
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