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a b s t r a c t 

In this paper, an inertial projection neural network (IPNN) is proposed for the reconstruction of sparse 

signals. Firstly, a nonconvex l 1 −2 minimization problem is presented for sparse signal reconstruction from 

highly coherent measurement matrices, instead of our familiar l 1 minimization which used standard con- 

vex relaxation. For solving this nonconvex l 1 −2 minimization problem, the IPNN is introduced. Under cer- 

tain condition, the convergence of IPNN is proved. Finally, a series of experiments on various applications 

are conducted and experimental results show the effectiveness and performance of IPNN for the intro- 

duced l 1 −2 minimization method. 

© 2018 Elsevier B.V. All rights reserved. 

1. Introduction 

Compressed sensing (CS) has been well developed over the 

last decade since the concept of which was formally proposed 

by Candès and Donoho [1,2] in 2006. As a new sampling the- 

ory, CS breaks through the bottleneck of shannon sampling the- 

orem, which makes high-resolution signal acquisition become 

possible. We can directly acquire the essential information of a sig- 

nal without the process of massive data acquisition. Nowadays, the 

sparse vector reconstruction problems have attracted much inter- 

est driven by important applications in signal processing [3] , com- 

pressed sensing [4] , machine learning [5] and statistics. A funda- 

mental issue of CS is to recover an unknown sparse signal x ∈ R 

n 

from measurements b = A x + e , where b ∈ R 

m , A ∈ R 

m ×n (m � n ) 

is a sensing(measurements) matrix, and e ∈ R 

m represents a vec- 

tor of measurement errors. It is a noise free problem in the case 

of e = 0 . The problem can be modeled as the following l 0 -norm 

minimization problem [6–8] : 

min 

x ∈ R n 
‖ x ‖ 0 subject to A x = b , (1) 
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where ‖ x ‖ 0 is a discontinuous and nonconvex function, denoting 

the number of nonzero components of x . In general, the problem 

(1) is NP-hard [9] . In order to overcome this difficulty, l 1 minimiza- 

tion or basis pursuit (BP) problem was proposed as an alternative 

min 

x ∈ R n 
‖ x ‖ 1 subject to A x = b , (2) 

where ‖ x ‖ 1 = 

∑ n 
i =1 | x i | . Equivalence of problem (1) and problem 

(2) were given in [10] and [11] . Problem (2) is a convex optimiza- 

tion problem and can be transformed into a linear programming 

problem which is called Basis Pursuit (BP). At the same time, it 

can be solved by interior-point methods [12] , gradient projection 

methods [13] , homology methods [14] and iterative re-weighted 

least squares (IRLS) [15] . However, even though l 1 minimization 

is convex, it fails to find the sparest solution due to some lead- 

ing entries (in magnitude) of x at times. In recent years, based 

on the fact that lim q → 0 ‖ x ‖ q q = ‖ x ‖ 0 , l q minimization problem 

[16–19] was proposed as a better approximation to l 0 minimiza- 

tion than l 1 minimization in the following: 

min 

x ∈ R n 
‖ x ‖ 

q 
q subject to A x = b , (3) 

where ‖ x ‖ q represents l q quasi-norm, defined by ‖ x ‖ q = (∑ n 
i =1 | x i | q 

) 1 
q . Beyond that, many other nonconvex penalties were 

proposed, such as smoothly clipped Absolute Deviation(SCAD) [20] , 

Minimax concave penalty(MCP) [21] , Log [22,23] and l 1 −2 

norm [24] . From a perspective of sensing matrix, Gaussian 

and Bernoulli random matrices often have small coherence which 
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is a way to characterize the dependence between columns of the 

matrix A . However, sensing matrix with high coherence often 

inevitably arises in many applications such as direction-of-arrival 

(DOA) estimation [25] , electroencephalography (EEG) source local- 

ization [26] and radar detection [27] . In these circumstances, the 

convex l 1 method leads to underperformance. In [24] , Yin et al. 

proposed an l 1 −2 method, which outperforms l 1 and l q method in 

dealing with such scenarios. 

In recent decades, numerous neural networks for solving opti- 

mization problems have been extensively investigated [28,29] . Par- 

ticularly, the recurrent neural network based on projective opera- 

tor has been studied in the field of science and engineering, which 

can obtain real-time solution of optimization problems [30,31] . In 

[32] , Xia and Wang presented a recurrent neural network for solv- 

ing linear projection equations. Liu and Wang gave a one-layer pro- 

jection neural network for solving non-smooth optimization prob- 

lems with generalized convex objective functions in [33] . Based on 

a continuous-time projection neural network, Liu presented l 1 min- 

imization algorithms for sparse signal reconstruction which were 

shown to be capable in [34] . 

In this paper we mainly discuss l 1 −2 minimization problem 

min 

x ∈ R n 
‖ x ‖ 1 − ‖ x ‖ 2 subject to A x = b . (4) 

Obviously, this is a nonconvex optimization problem. Applying the 

knowledge of variable substitution and projective operator [35] , we 

propose a novel neural network model for the minimization of 

the unconstrained l 1 −2 problem (5) . With this approach, we can 

solve the problem in real-time and avoid the difficulty of the sub- 

gradient term. It is shown that the neural network is stable. 

The rest of this paper is organized as follows. In Section 2 , we 

present a neural network model and then discuss the existence 

and convergence of its solution. In Section 3 , numerical experi- 

ments are conducted to illustrate the performance of the proposed 

neural network. Finally, we make the conclusion in Section 4 . 

2. Problem formulation 

By means of the Lagrange multiplier, we convert the problem 

(4) into the unconstrained optimization problem 

min 

x ∈ R n 
1 

2 

‖ A x − b ‖ 

2 
2 + τ ( ‖ x ‖ 1 − ‖ x ‖ 2 ) . (5) 

There is no doubt that the objective of (4) is not differentiable. 

Instead of searching a method for minimizing the nonconvex ob- 

jective function directly, we first transform the objective function. 

Suppose that in problem (5) , the unknown variable x is replaced by 

x = u − v , where u , v ∈ R 

n take all positive and negative elements 

of x , respectively, i.e. u i = ( x i ) + , v i = ( −x i ) + , ( x i ) + = max { x i , 0 } , 
i = 1 , . . . , n . With this replacement, it is easy to have that 

‖ x ‖ 1 = 1 

T 
n ( u + v ) = 1 

T 
n u + 1 

T 
n v , 

‖ x ‖ 2 = ‖ u − v ‖ 2 , 

A x = A ( u − v ) , 

where 1 n = ( 1 , ..., 1 ) T . Ther efor e, the pr oblem (5) can be re-written 

as 

min 

u , v ∈ R n 
1 

2 

‖ A ( u − v ) − b ‖ 

2 
2 − τ‖ u − v ‖ 2 + τ1 

T 
n u + τ1 

T 
n v 

subject to u � 0 , v � 0 (6) 

here τ > 0 is a regularization parameter. This problem is equivalent 

to the following nonconvex problem 

min f ( z ) = 

1 

2 

z T Bz − τ
(
z T z 

) 1 
2 + c T z 

subject to z ∈ S = { z ∈ R 

n | z � 0 } (7) 

where the objective function f ( z ) is a nonconvex and continuous 

differential, and 

z = 

(
u 

v 

)
, 

B = 

(
A 

T A −A 

T A 

−A 

T A A 

T A 

)
, 

c = τ1 2 n + 

(
−A 

T b 

A 

T b 

)
. 

When x , A are known, b can be calculated simply by b = A x , 

then z , B and c will be further obtained. From a perspective of 

sensing matrix A , the properties of A are crucial for signal recon- 

struction in CS, thus the selection of A is what we are interested in. 

Both Restricted Isometry Properties (RIPs) and coherence are im- 

portant tools to analyze the properties of sensing matrix. Gaus- 

sian or Bernoulli random matrices in general satisfy certain RIP, 

whereas they have low coherence. Owing to highly coherent mea- 

surement matrices are needed in many applications, it is necessary 

to consider l 1 −2 minimization, which has achieved excellent results 

in this case. The definition of the coherence as follows. 

Definition 1. The coherence of a given matrix A is the largest ab- 

solute value of the cross-correlations between different columns 

from A , namely, 

μ( A ) = max 
i � = j 

∣∣A 

T 
i A j 

∣∣
‖ A i ‖ 2 ‖ A j ‖ 2 

, 

where A i is the i -th column vector of A . 

Remark 1. The coherence is a way to characterize the dependence 

between different columns from A , and it is easy to compute. We 

describe a matrix A as a highly coherent measurement matrix if 

the coherence of which is large enough. 

3. Neural network model and analysis 

This section presents an IPNN for solving l 1–2 minimization 

problem in CS. Based on scaled gradient projection, a neural net- 

work model is established to solve nonconvex problem (7) . In ad- 

dition, we demonstrate the convergence and the stability of the 

neural network. 

3.1. Model description 

Let z ∗ ∈ S as an optimal solution of (7) , since f ( z ) is twice dif- 

ferentiable, then z ∗ + t ( z − z ∗) ∈ S for all t ∈ [0, 1] and z ∈ S. Thus 

the function q ( t ) = f ( z ∗ + t ( z − z ∗) ) is differentiable in (0, 1), and 

hence q ′ (0) ≥ 0 since q ( t ) reaches its minimum at t = 0 . So 

q ′ ( 0 ) = ∇ f ( z ∗) T ( z − z ∗) � 0 , ∀ z ∈ S. (8) 

Finding an optimization of the (7) is equivalent to solve varia- 

tional inequality(VI) (8) , which can be treated like a natural frame- 

work of equilibrium problem in scientific and engineering fields. 

Therefore, our next task is to seek a appropriate approach for the 

VI (8) . 

In the light of [35] , we have the following inertial projection 

neural network (IPNN) model 
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