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a b s t r a c t 

Data-driven graphs constitute the cornerstone of many machine learning approaches. Recently, it was 

shown that sparse graphs (sparse representation based graphs) provide a powerful approach to graph- 

based semi-supervised classification. In this paper, we introduce a new structured sparse graph that is 

derived by integrating manifold-type constraints on the sparse coefficients without any a priori graph or 

similarity matrix. Furthermore, we introduce a direct and efficient solution to the proposed optimization 

problem. Unlike recent sparse graph construction methods that are based on the use of hand-crafted 

constraints or a predefined reference similarity matrix, our constraints are directly defined on the graph 

weights themselves, and can provide additional information to both local and global structures of the 

sparse graph. Experiments conducted on several image databases show that the proposed graph can give 

better results than many state-of-the-art sparse graphs when applied to the problem of graph-based label 

propagation. 

© 2018 Elsevier B.V. All rights reserved. 

1. Introduction 

Graphs are entities that can encode pairwise similarity among 

data samples [1–6] . Graph-based learning tasks operate on a data 

driven graph [7–16] . In the graphs, the vertices correspond to data 

samples and the weighted edges between vertices quantify the 

similarity between two vertices. The most known method to build 

a graph, or equivalently to compute its affinity matrix, is to build 

k -nearest neighbor graphs [17] or ε-neighborhoods graphs. The ob- 

tained edges are then estimated using a pairwise similarity func- 

tion that encodes the similarity between a vertex and its nearest 

neighboring vertexes (data samples). These approaches suffer from 

two major drawbacks. First, setting the parameters of these ap- 

proaches is very challenging. The parameters of such approaches 

can impact the final performance of the task [18] . Second, even 

with their best parameter configuration, these approaches are not 

guaranteed to provide the best results when compared to other 

competing graph construction methods. In [8] , the authors ex- 

ploit the criterion used by Locally Linear Embedding (LLE) in or- 

der to estimate the edge weights of the graphs using a linear 

coding scheme. In [9] , the authors rely on the LLE criterion for 
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semi-supervised dimensionality reduction and estimate a neigh- 

borhood preserving graph. On the other hand, sparse coding be- 

comes a widely adopted tool which supposes that any signal can 

be composed by some basic signals. In [11] , the authors build a 

sparse graph for which the edges weights are set to the coeffi- 

cients of the sparse coding. They apply the obtained graph to the 

problem of human face recognition via the computation of the lin- 

ear projection associated with the Locality Preserving Projection 

method. In [19] , the authors also use the sparse codes in order to 

build the graph. The graph is used for semi-supervised classifica- 

tion [20] and multi-label classification [21] . A lot of graph based 

semi-supervised learning (SSL) techniques have been introduced 

[22–24] . These techniques can be classified into two categories: 

(i) those that exploit the graph structure and weights to propa- 

gate labels from labeled data samples to unlabeled ones and (ii) 

those that provides a data projection that incorporates the smooth- 

ness constraints encoded by the graph. Nowadays, graph based SSL 

have led to many advances in many real world applications such as 

emotion recognition in videos, face recognition, audio recognition, 

text classification, webpage classification, protein structure predic- 

tion, and image classification. 

Despite its increasing popularity, little work performed compre- 

hensive and unbiased empirical studies that show the impact that 

graph construction methods have in both, stability and classifica- 

tion performance of the graph-based learning tasks. 
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In [25] , the authors propose a graph construction method us- 

ing b-matching. The objective is to enforce that all the vertexes 

of the graph will have the same degree. The degree of a vertex 

refers to the number of the edges connected to the vertex. In the 

past decade, researchers proposed many different coding schemes 

and code book generation algorithms. In [26] , the authors proposed 

to build hard graphs by exploiting a criterion similar to the one 

used by Roweis and Saul [27] . In this work, the edge weighting 

and neighbor selection are conducted in a single phase; the affinity 

matrix of the graph is symmetric and only positive or zero weights 

are allowed. The weights are estimated by constraining the degree, 

or the weighted degree of each vertex, to be equal to or greater 

than one. The authors develop a quadratic program that estimates 

the non-negative weights. The non-tractability of the solution is 

avoided by adopting an incremental approach in which only one 

subset of edges is estimated at a time. 

In [28] , the authors propose semantic � 1 and KNN graphs in 

order to infer the label of superpixels (image regions) in a col- 

lection of labeled images. The objective is to provide a parsing 

for the images. The sought graph similarity matrix is related to 

all superpixels. For semantic � 1 graph, instead of performing the 

� 1 coding with all superpixels, it is performed on individual dic- 

tionary that collects the superpixels in all images having a given 

label. The chosen coding dictionary is the one that provides the 

smallest � 1 norm. For semantic KNN graphs, the coding dictionary 

is chosen such that it minimizes the pairwise similarity between 

the neighbors of a given class and the neighbors of its comple- 

mentary class. In [29] , the author proposes two types of seman- 

tic hypergraphs, which explore both intra-image and inter-image 

high-order semantic relevance. Besides, they provide a scheme for 

fusion three graphs over the superpixels: the two semantics hyper- 

graph and the semantic KNN graph. 

In [30] , we have proposed a graph construction method that is 

based on data self-representativeness. The method uses Local Hy- 

brid Coding on adaptively obtained local and non-local bases. Both 

locality and sparsity are simultaneously taken into account when 

generating the graph affinity matrix. The resulting graph can be 

very informative. However, the method has a high computational 

cost. 

In [14] , we proposed a dynamic graph construction method for 

inductive semi-supervised learning. The proposed method, after re- 

ceiving new samples, updates the affinity graph dynamically with- 

out the need to construct the graph from scratch. In the first phase, 

the new samples are appended to the graph. Then, data samples, 

in the already available graph, who are similar to the new added 

samples undergo possible changes of their edges and edge weights. 

1.1. Motivation and contribution 

The fact that images lie on a manifold has been successfully 

exploited in many inference and learning tasks. Therefore, many 

methods relied on the assumption that data are on or close to 

a manifold [31–36] . They attempted to get a linear or non-linear 

projection from the original space in which data live to a low 

dimensional subspace. Therefore, when one has to categorize a 

well-defined object category (e.g., digits, faces, animals, etc.), any 

classification paradigm taking advantage of the recovered low 

dimensional subspace can get improved performance. For in- 

stance, locality preserving is basically used in Laplacian eigenmaps 

[31] and its linearized version (locality preserving projection) [32] . 

This paper introduces a new insight to the graph construction 

problem. In particular, the paper exploits a relevant intuition that 

was neglected in previous graph construction methods. For data 

projection, manifold constraints were already used. However, for 

the problem of graph construction, the main crux is to efficiently 

embed these manifold constraints on the graph structure since 

these constraints are depending on the graph itself. This paper pro- 

poses a structured sparse graph construction method in which the 

graph is obtained by enforcing these manifold constraints. The pro- 

posed method is called structured sparse graph (SSG). Unlike con- 

strained sparse graphs that are based on the use of hand-crafted 

constraints or a predefined reference similarity matrix, our pro- 

posed SSG method is generic and implicitly exploits smoothness 

constraints on the graph weights. Therefore, it provides additional 

information to the global and local structures of the sparse graph. 

To the best of our knowledge, our previous work [37] is the first 

one that investigates the use of such manifold constraints on the 

rows or columns of the unknown affinity matrix associated with 

the graph. In this paper, we propose two main extensions to the 

proposed framework in [37] . Firstly, our current work introduces 

a criterion that provide sparse graphs; whereas the criterion of 

[37] provides non-sparse graphs. Secondly, the current work pro- 

poses a direct minimization of the criterion in which the graph 

affinity matrix is directly estimated whereas in [37] the graph is 

recursively estimated. The resulting graph integrates three power- 

ful criteria needed for getting an informative graph: (i) data self- 

representativeness, (ii) graph sparsity, and (iii) manifold constraints 

on the graph coefficients. 

In [38] and [39] , a novel scheme for dictionary learning was in- 

troduced. The authors estimate the dictionary from data by impos- 

ing the smoothness of sparse codes of the data. This is easily en- 

coded since the data graph is known in advance. Unlike [38] and 

[39] , where the graph is known a priori, our proposed approach 

aims to estimate the graph from data alone using manifold con- 

straints on the edge weights. The main difference between our in- 

troduced method and the constrained graphs described in [40] and 

[41] is the fact that ours does not require the availability of a pre- 

defined affinity matrix. Thus, our work avoids the dependency on 

an a priori affinity matrix. 

The paper is organized as follows. Section 2 briefly re- 

views some related works in sparse graph construction. 

Section 3 presents the proposed graph construction method. 

Section 4 gives some experimental results obtained with five 

real image datasets, showing the efficacy and efficiency of the 

proposed method. Section 5 presents some conclusions. Matrices 

are denoted by capital bold letters and vectors are denoted by 

small bold letters. 

2. Review of sparse graphs 

2.1. Sparse graphs 

Qiao et al. [11] and Yan and Wang [19] proposed sparsity repre- 

sentation based graph construction methods in which every sam- 

ple is represented as a sparse linear combination of the rest of in- 

put samples and the coefficients are considered as weights. These 

are estimated using � 1 minimization given by: 

min ‖ s i ‖ 1 , s.t. x i = X s i , (1) 

where s i = [ s i 1 , . . . , s i,i −1 , 0 , s i,i +1 , . . . , s in ] 
T is a vector ∈ R 

n whose 

i th component is equal to zero (meaning that the sample x i is ex- 

tracted from X ∈ R 

D ×n ). 

After the weight vector s i for each x i , i = 1 , 2 , . . . , n is obtained, 

the graph matrix S ∈ R 

n ×n can be defined by: 

S = [ s 1 , s 2 , . . . , s n ] 
T , (2) 

where s i corresponds to the solution of Eq. (1) . 

Robust sparse graphs can be obtained if the sparse codes are 

estimated using a robust � 1 minimization problem: 

min ‖ s i ‖ 1 + ‖ e ‖ 1 , s.t. x i = X s i + e . (3) 
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