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a b s t r a c t

In the framework of Mixed Models, it is often of interest to provide an estimate of the
uncertainty in predictions for the randomeffects, customarily defined by theMean Squared
Error of Prediction (MSEP). To address this computation in the Generalized Linear Mixed
Model (GLMM) context, a non-parametric Bootstrap algorithm is proposed. First, a newly
developed Bootstrap scheme relying on random weighting of cluster contributions to the
joint likelihood function of the model and the Laplace Approximation is used to create
bootstrap replicates of the parameters. Second, these replicates yield in turn bootstrap
samples for the random effects and for the responses. Third, generating predictions of the
random effects employing the bootstrap samples of observations produces bootstrap repli-
cates of the random effects that, in conjunction with their respective bootstrap samples,
are used in the estimation of the MSEP. To assess the validity of the proposed method,
two simulation studies are presented. The first one in the framework of Gaussian LMM,
contrasts the quality of the proposed approach with respect to: (i) analytical estimators of
MSEP based on second-order correct approximations, (ii) Conditional Variances obtained
with a Bayesian representation and (iii) other bootstrap schemes, on the grounds of relative
bias, relative efficiency and the coverage ratios of resulting prediction intervals. The second
simulation study serves the purpose of illustrating the properties of our proposal in a Non-
Gaussian GLMM setting, namely a Mixed Logit Model, where the alternatives are scarce.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction 1

In many applications of Mixed Models, it is of interest to provide an ‘‘estimate’’ of the value for the random effects, be 2

it for forecasting purposes or to assess the quality of a particular fit e.g. by performing some sort of residual analysis post- 3

estimation. The process of providing such values is customarily called Point Prediction of the RandomEffects, a denomination 4

used to state its difference from the Estimation of the Model Parameters. 5

The problem of Prediction of Random Effects has beenwidely explored in the literature of GaussianGLMMor LinearMixed 6

Models (LMM), a setting for which theoretical results have led to the determination of the Best Linear Unbiased Predictor 7

(BLUP) in full knowledge of the model parameters, and its Empirical version (EBLUP) when the parameters are estimated. 8

Naturally, this approach has analogues in the Non-Gaussian framework in the form of the Best Predictor (BP) and EBP, often 9
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approximated by Conditional Modes obtained with an Empirical Bayes approach, see e.g Morris (1983) and Tierney and1

Kadane (1986).2

Similarly to the estimation problem, where point estimates are provided alongside their standard errors for inferential3

purposes, it is useful to retrieve ameasure of uncertainty of the point predictions e.g. to classify observational units according4

to ‘‘significant’’ differences in their predicted response or to construct prediction intervals for new observations drawn from5

a given unit. In LMM, this translates into the computation of theMean Squared Error of the Prediction (MSEP), often estimated6

by means of second-order correct approximations that take into account the uncertainty due to the parameter estimation,7

such as those proposed by Kackar and Harville (1984), Prasad and Rao (1990), Datta and Lahiri (2000) and Das et al. (2004). In8

a more general framework, it is customary to report estimates of the Conditional Variances (CV) resulting from the Bayesian9

outlook on the GLMM, with the addition of corrections that account for the added variability of the estimation of the model10

parameters, see e.g. Kass and Steffey (1989), Booth and Hobert (1998) and Singh et al. (1998). The computation of these11

measures could also be undertaken with the use of resampling methods such as the Jackknife approach to the computation12

of MSEP (Jiang et al., 2002) or the more widespread Parametric Bootstrap (PB) method, used to produce estimates of MSEP,13

see for instance Butar and Lahiri (2003) or to build Prediction Intervals, as seen in Butar and Lahiri (2003), Hall and Maiti14

(2006), Chatterjee et al. (2008) and Li and Lahiri (2010).15

To the best of our knowledge, there are very few proposals that attempt to tackle this problem by means of a non-16

parametric bootstrap procedure. Moreover, these methods often rely on the resampling of some sort of residuals and17

predictions of the random effects making their implementation in the Gaussian LMM framework straightforward and18

intuitive, yet harder to export to the Generalized i.e. non-Gaussian setting. Hence, we propose to confront the MSEP19

estimation by means of a non-parametric Bootstrap method resulting from the adaptation of the Random Weighted Laplace20

Bootstrap (RWLB) (Flores-Agreda, 2017), a scheme having the main advantage of being applicable in the entire class of21

GLMM. This proposal is compared to adaptations of other schemes such as the so-called Random Effect Bootstrap (REB),22

see e.g. Davison and Hinkley (1997), Carpenter et al. (2003), and Field et al. (2008), and the more widespread Parametric23

Bootstrap alternatives.24

The article is structured as follows: In Section 2, we set up the notation of the GLMM, characterize the special case of LMM25

(Section 2.1) and summarize the problemof prediction of randomeffects (Section 2.2). Section 3, contains an overviewof two26

methods for the evaluation and estimation of the uncertainty in prediction namely the approach via the MSEP (Section 3.1)27

and the Empirical Bayes approaches relying on CV (Section 3.2). We briefly review some resampling schemes for LMM in28

Section 3.3, highlight or propose adaptations to the estimation of uncertainty in the Non-Gaussian context and formulate29

our proposals based on the RWLB scheme. Finally, Section 4 contains two simulation studies as a basis of comparison of the30

different methods, one carried on a LMM (Section 4.1) and second one in a Mixed Logit context (Section 4.2).31

2. Model and notation32

Let i = 1, . . . , n denote the index of the observational unit and j = 1, . . . , ni the index for an observation within this unit.33

Write θ = [βT , σT
]
T (d × 1) to denote the vector of model parameters, where β(p×1) represents the fixed effect parameters34

and σ(s × 1) contains the parameters associated with the random effects sometimes referred to as Variance Components35

and d = p + s. Write yij to denote the observed outcomes, assumed to be independently drawn from an exponential36

family when conditioned on a vector of covariates xij(p × 1) and a vector of random effects γ i(q × 1) following a Nq(0,∆σ )37

distribution, endowed with a positive-definite symmetric covariance matrix ∆σ . For notation simplicity, we will consider38

the reparametrization γ i = Dσui resulting from the Cholesky decomposition of ∆σ = DσDT
σ where ui are multivariate39

standard normal vectors. Let µij denote the conditional expectation of the outcome, zij(q× 1) a design vector for the random40

effects and ηij = xTijβ + zTijDσui the Linear Predictor. With g , representing a monotonic link function that maps the linear41

predictor and the conditional expectation of the outcome, the GLMM can be formulated as follows:42

g
(
µij

)
= ηij = xTijβ + zTijDσui.43

Let f denote the Probability Density Function (PDF) or Probability Mass Function (PMF) evaluated at the observed44

outcomes yij, conditioned on vectors xij, ui and assumed to follow conditional exponential families :45

fθ
(
yij|ui

)
:= f

(
yij|ui, xij; θ, φ

)
= exp

[
yijξij − b

(
ξij

)
φ

+ c
(
yij, φ

)]
46

for φ a nuisance dispersion parameter, ξij = ξ (ηij) the so-called canonical parameter (when φ is known) and with b, the47

cumulant function, characterizing the conditional means and variances of the outcomes, e.g. µij = E[Yij|ui] = b′(ξij) and48

νij = v(µij) = Var[Yij|ui] = φb′′(ξij) and c denoting a specific function. In what follows, and without loss of generality, we49

consider the link g to be the canonical link, in other words µij = b′(ηij), implying ξij = ηij.50

The expressions of the marginal PDF/PMF fθ (yij) are obtained after integration of the random effects from the joint51

distribution of [yij,uT
i ]

T . Using ϕ to denote the density of the standard multivariate normal random vector ui and with52

the assumptions on the independence between yij conditional on ui, the Likelihood contributions are given by multivariate53

integrals of the form:54

Li (θ) :=

∫
Rq

⎡⎣ ni∏
j=1

fθ
(
yij|ui

)⎤⎦ϕ (ui) dui =

∫
Rq

Li (θ,ui) dui. (1)55
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