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a b s t r a c t

We consider quantile additive models with dynamic (time-varying) component func-
tions. We allow some of the component functions to be non-dynamic, and show, as
expected but technically nontrivially, that estimators of the non-dynamic functions have
a faster convergence rate. A penalization-based method, called dynamic structure pursuit,
is proposed to automatically identify these non-dynamic functions. Finally, in the sparse
setting, a four-stage estimation procedure is proposed which first identifies the nonzero
component functions and then applies the identification strategy of the non-dynamic
functions. Theoretical and numerical results are provided to illustrate the performance of
the estimators.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction 1

Additive models (AM) provide an efficient way of coping with nonparametric estimation problems and avoid the ‘‘curse 2

of dimensionality’’ in nonparametric problems by assuming that the effects of the different predictors act on the response 3

additively, although possibly nonlinearly. More specifically, with Y the response, X = (X1, . . . , Xp)T the predictors, one 4

assumes 5

Y = µ+

p∑
j=1

fj(Xj) + ϵ, 6

where µ is the intercept parameter, fj are unknown component functions, and ϵ represents the mean zero noise. 7

In the early literature, kernel-based backfitting and local scoring procedures have been proposed by Buja et al. (1989) 8

to iteratively estimate the nonparametric components by solving a large system of equations (Yu et al., 2008). Linton and 9

Nielsen (1995) applied themarginal integration approach (Linton and Härdle, 1996) to estimate the parametric components 10

by treating the summand of additive terms as a nonparametric component, which is then estimated as a multivariate 11

nonparametric function. As it is well-known that the kernel-based backfitting and marginal integration approaches are 12

computationally expensive, Wood (2004), Ruppert et al. (2003) and Marx and Eilers (1998) suggested penalized regression 13

splines, which share most of the practical benefits of smoothing spline methods combined with ease of use and reduction of 14

the computational cost of backfitting generalized additive models (GAMs). But no theoretical justifications are available for 15

these procedures. 16
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To overcome these limitations, Wang et al. (2011) proposed to estimate the nonparametric components by polynomial1

splines (Stone, 1986, 1994; Huang, 1998; Xue and Yang, 2006; Andrews, 1991; Andrews and Whang, 1990; Chen, 2007;2

Donald and Newey, 1994; Newey, 1997; Wang and Tian, 2016; Zhao et al., 2018). After the spline basis is chosen, the3

coefficients can be estimated by an efficient one-step procedure of maximizing the quasi-likelihood function. Thus the gain4

of the proposed in terms of computational reduction is remarkable in contrast to alternative estimationmethods. In addition,5

the proposed procedure can easily formulate a penalized functional to implement variable selection. See Wang et al. (2011)6

for more details.7

However, the restriction of these works on mean regression, that is on estimating the conditional mean regression8

function, may be a limitation. As a useful supplement to mean regression, quantile regression (Koenker and Bassett Jr, 1978;9

Koenker, 2005) produces a more complete description of the conditional response distribution and is more robust to heavy-10

tailed random errors. In particular, it can uncover different structural relationships between covariates and responses at the11

upper or lower tails, which is often of significant interest in econometrics and biomedical applications. This inspired some12

works on quantile additive models recently (Horowitz and Lee, 2005; Lian, 2012; Kato, 2011).13

Here we consider functional/longitudinal data model, allowing both responses and predictors to be functional. Zhang et14

al. (2013) proposed the following dynamic time-varying model:15

Y (t) = µ(t) +

p∑
j=1

fj(Xj(t), t) + ϵ(t). (1)16

The model above is a natural extension of the conventional additive model by allowing time-dynamic bivariate component17

functions. At any given time t , this reduces to the conventional additive model. The model achieves dimension reduction18

while being able to capture potential dynamic relations of functional/longitudinal predictors and responses. Zhang et al.19

(2013) considered the case that the stochastic processes are observed at sparse discrete time points, as we also assume in20

this work.21

Themain contributions of our work are four-fold, extending the approach of Zhang et al. (2013) in various ways. First, we22

consider quantile estimation of (1), which provides a more complete characterization of the conditional distribution of the23

response. Second, we consider the case that only some, but not all of the component functions are time-dynamic, resulting24

in a partially dynamic model, and establish (as expected but technically nontrivial) that the estimator for the non-dynamic25

component functions converges at a faster rate than the dynamic component functions. As far as we know, this is the first26

paper that established such convergence rate results in models involving both bivariate and univariate functions. Third,27

we propose a penalization-based framework, called dynamic structure pursuit, for automatically separating the dynamic28

and non-dynamic component functions. Fourth, under the setting assuming the true model is sparse with some irrelevant29

predictors, we propose a four-stage penalized estimation procedure that first selects the relevant predictors followed by the30

dynamic structure pursuit and establish its nonparametric oracle property (Storlie et al., 2011).31

The rest of the article is organized as follows. In Section 2, we consider splines-based quantile regression for partially32

dynamic additive models, assuming the identities of the non-dynamic component functions are known. In the case that33

the identities of the non-dynamic component functions are unknown, it can be regarded as the infeasible oracle model. For34

the latter case, in Section 3, we present a penalized estimation method for dynamic structure pursuit. Oracle properties35

are established which show that the correct structure can be identified with probability approaching one. In Section 4,36

under the paradigm of sparse modelling, we use a four-stage procedure to separate the zero components, nonzero dynamic37

components and the nonzero non-dynamic components. Section 5 contains simulation studies and a real data analysis. We38

conclude in Section 6 with discussions. Finally, The technical proofs are relegated to the Appendix.39

2. Estimation of partially dynamic additive models40

Under the functional framework, we assume Yi(t), Xi(t) = (Xi1(t), . . . , Xip(t))T are i.i.d. stochastic processes across i and41

QYi(t)|Xi(t)(τ ) = µ(t) +

p∑
l=1

fl(Xil(t), t), (2)42

where QYi(t)|Xi(t)(τ ) denotes the τ -conditional quantile of Yi(t) conditional on Xi(t) for τ ∈ (0, 1). The dependence of the43

right-hand side of (2) on τ is suppressed when no confusion arises. For subject i, we observe time points tij, j = 1, . . . ,mi44

and the response and the predictor processes are observed on these time points. Writing yij = Yi(tij) and xij = Xi(tij) =45

(xij1, . . . , xijp)T, we have46

Qyij|xij,tij (τ ) = µ(tij) +

p∑
l=1

fl(xijl, tij). (3)47

There is actually almost no modifications necessary in methodology and theory when we consider longitudinal data, for48

which we do not regard the response and predictors as stochastic processes, but that we have mi observations of subject49

i, 1 ≤ i ≤ n at time points tij, j = 1, . . . ,mi. Thus we can still write the quantile regression model as in (3). Under our50

assumptions stated later, the asymptotic properties for both cases are established in exactly the same way. Without loss51
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