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a b s t r a c t

LetG be a graph on n vertices and STABk(G) be the convex hull of characteristic vectors of its
independent sets of size atmost k.We study extension complexity of STABk(G)with respect
to a fixed parameter k (analogously to, e.g., parameterized computational complexity of
problems). We show that for graphs G from a class of bounded expansion it holds that
xc(STABk(G)) 6 O(f (k) · n)where the function f depends only on the class. This result can
be extended in a simpleway to awide range of similarly defined graph polytopes. In case of
general graphswe show that there is no function f such that, for all values of the parameter k
and for all graphs on n vertices, the extension complexity of STABk(G) is at most f (k) ·nO(1).
While such results are not surprising since it is known that optimizing over STABk(G) is FPT
for graphs of bounded expansion andW [1]-hard in general, they are also not trivial and in
both cases stronger than the corresponding computational complexity results.

© 2017 Published by Elsevier B.V.

1. Introduction

Polyhedral (aka LP) formulations of combinatorial problems belong to the basic toolbox of combinatorial optimization.
In a nutshell, a set of feasible solutions of some problem is suitably encoded by a set of vectors, whose convex hull forms
a polytope over which one can then optimize using established tools. A polytope Q is said to be an extended formulation or
extension of a polytope P if P is a projection of Q . Measuring the size of a polytope by the minimum number of inequalities
required to describe it, one can define the extension complexity of a polytope to be the size of the smallest extension of the
polytope. This notion has a rich history in combinatorial optimization where by adding extra variables one can sometimes
obtain significantly smaller polytopes. For some recent survey on extended formulations in the context of combinatorial
optimization and integer programming see [8,13,20,21].

Since linear (or indeed convex) optimization of a polytope P can instead be indirectly done by optimizing over an
extended formulation of P , this concept provides a powerfulmodel for solvingmany combinatorial problems. Various Linear
Program (LP) solvers exist today that perform quite well in practice and it is desirable if a problem can be modeled as a
small-sized polytope over which one can use an existing LP solver for linear optimization. However, in recent years super-
polynomial lower bound on the extension complexity of polytopes associatedwithmany combinatorial problems have been
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established. These bounds have been generalized to various settings, such as convex extended formulations, approximation
algorithms, etc. These results are too numerous for a comprehensive listing, but we refer the interested readers to some of
the landmark papers in this regard [4,7,10,19].

Many of the recent lower bounds on the extension complexity of various combinatorial polytopes mimic the
computational complexity of the underlying problem. For example, it is known that the extension complexities of polytopes
related to various NP-hard problems are super-polynomial [1,4,10,18]. One satisfying feature of these lower bounds is that
they are independent of traditional complexity-theoretic assumptions such as P ≠ NP . Though, there also exist polytopes
corresponding to polynomial time solvable optimization problems whose extension complexity is super-polynomial. In
particular, the perfect matching polytope was shown to have super-polynomial extension complexity by Rothvoß [19].
Hence even if the extension complexity of a problemmimics its computational complexity, lower and upper bounds on the
former do not follow from the corresponding computational complexity bounds and constitute nontrivial new results of
independent interest.

One can naturally ask the related questions in the realm of parameterized complexity theory. In this rapidly grown field
each problem instance comes additionally equipped with an integer parameter, and the ‘‘efficient’’ class denoted by FPT
(fixed-parameter tractable) is the one of problems solvable, for every fixed value of the parameter, in polynomial time of
degree independent of the parameter. See Section 2 for details.

Similarly as parameterized complexity provides a finer resolution of algorithmic tractability of problems, parameterized
extension complexity can provide a finer resolution of extension complexities of polytopes of the problems. We similarly
say that a polytope has an FPT extension if it has an extension which is, for every fixed value of the parameter, of polynomial
size with degree independent of the parameter. Again, see Section 2 for details.

We follow this direction of research with a case study of the independent-set polytope of a graph, naturally parameterized
by the solution size. We confirm that the extension complexity of the independent-set polytope indeed mimics the
parameterized computational complexity of the underlying independent set problem—a finding which is again not implied
by the parameterized complexity status of this problem andwhich is actually a lot stronger than previous related complexity
knowledge. Precisely, we prove:

• that the independent-set polytope cannot have an FPT extension for all graphs, independently of any computational-
complexity assumptions (Section 3), but

• linear-sized FPT extensions of the independent-set polytope do exist on every graph class of bounded expansion
(Section 4).

Seeing the latter result, onemay naturally think whether analogous results hold for other similar problems. For example,
one may consider the polytope of (induced) subgraphs isomorphic to a given graph F , parameterized by the size of F . Or,
more generally, polytopes defined by solutions of non-local problems, such as the polytope of dominating sets of a certain
size. While ad-hoc adaptations of our technique to such problems are surely possible, we prefer to give a ‘‘metatheorem’’—a
generic solution aimed at all problems defined in a certain framework.

Namely, we further formulate and prove the following generalizations:

• there is a natural way to assign a definition of a polytope to every graph problem expressible in FO logic, and these
polytopes have linear-sized FPT extensions on every graph class of bounded expansion when parameterized by the size
of the formula expressing the problem (Section 5),

• for a restricted fragment of FO graph problems, near-linear-sized FPT extensions of the polytopes exist even on so called
nowhere dense graph classes (Section 6).

We conclude the paper with some further thoughts and suggestions in Section 7.

2. Preliminaries

We follow standard terminology of graph theory and consider finite simple undirected graphs.We refer to the vertex and
edge sets of a graph G as V (G) and E(G), respectively. An independent set X of vertices of a graph is such that no two elements
of X are adjacent. By a cut in a graph Gwe mean an edge cut, that is, an inclusion-wise minimal set of edges C ⊆ E(G) such
that G \ C has more connected components than G.

For fundamental concepts of parameterized complexitywe refer the readers, e.g., to themonograph [9]. Herewe just very
briefly recall the needed notions. Considering a problem P with input of the form (x, k) ∈ Σ∗

× N (where k is a parameter),
we say that A is fixed-parameter tractable (shortly FPT) if there is an algorithm solving A in time f (k) · nO(1) where f is an
arbitrary computable function. In the (parameterized) k-independent set problem the input is (G, k) where G is a graph and
k ∈ N, and the question is whether G has an independent set of size at least k.

There is no known FPT algorithm for the k-independent set problem in general and, in fact, the theory of parameterized
complexity [9] defines complexity classes W [t], t ≥ 1, such that the k-independent set problem is complete for W [1].
Problems that areW [1]-hard do not admit an FPT algorithm unless the Exponential Time Hypothesis fails.
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