Characterizing graphs of maximum matching width at most 2

Jisu Jeong ${ }^{\text {a,* }}$, Seongmin Ok $^{\text {b }}$, Geewon Suh ${ }^{\text {c }}$
${ }^{\text {a }}$ Department of Mathematical Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
${ }^{\text {b }}$ School of Computational Sciences, Korea Institute for Advanced Study, Seoul, Republic of Korea
c School of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea

ARTICLE INFO

Article history:
Received 3 June 2016
Received in revised form 13 June 2017
Accepted 23 July 2017
Available online xxxx

Keywords:

Maximum matching width
Minor obstructions
Grid

Abstract

The maximum matching width is a width-parameter that is defined on a branchdecomposition over the vertex set of a graph. The size of a maximum matching in the bipartite graph is used as a cut-function. In this paper, we characterize the graphs of maximum matching width at most 2 using the minor obstruction set. Also, we compute the exact value of the maximum matching width of a grid.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Treewidth and branchwidth are well-known width-parameters of graphs used in structural graph theory and theoretical computer science. Based on Courcelle's theorem [4], which states that every property on graphs definable in monadic secondorder logic can be decided in linear time on a class of graphs with bounded treewidth, many NP-hard problems have been shown to be solvable in polynomial time by dynamic programming when the input has bounded treewidth or branchwidth.

Vatshelle [20] introduced a new graph width-parameter, called the maximum matching width (mm-width in short), that uses the size of a maximum matching as a cut-function in its branch-decomposition of the vertex set of a graph. Maximum matching width is related to treewidth and branchwidth as shown by the inequality $\operatorname{mmw}(G) \leq \max (\operatorname{brw}(G), 1) \leq$ $\operatorname{tw}(G)+1 \leq 3 \mathrm{mmw}(G)$ for every graph $G[20]$ where $\operatorname{mmw}(G), \operatorname{tw}(G)$, and $\operatorname{brw}(G)$ are the maximum matching width, the treewidth, and the branchwidth of G respectively. This implies that bounding the treewidth or branchwidth is qualitatively equivalent to bounding the maximum matching width. Maximum matching width gives a more efficient algorithm for some problems. For a given branch-decomposition of a graph G of maximum matching width k, we can solve the Minimum Dominating Set Problem in time $0^{*}\left(8^{k}\right)$ [8], which gives a better runtime than $0^{*}\left(3^{\operatorname{tw}(G)}\right)$-time algorithm in [19] when $\operatorname{tw}(G)>\left(\log _{3} 8\right) k$. Note that the Minimum Dominating Set Problem cannot be solved in time $O^{*}\left((3-\varepsilon)^{\mathrm{tw}(G)}\right)$ for every $\varepsilon>0$ unless the Strong Exponential Time Hypothesis fails [10].

The Robertson-Seymour theorem [13] states that every minor-closed class of graphs has a finite minor obstruction set. In the other words, a graph G is in the class if and only if G has no minor isomorphic to a graph in the obstruction set. Much work has been done to identify the minor obstruction set for various graph classes, especially for graphs of bounded width-parameters [2,5,9].

Let K_{n}, C_{n}, and P_{n} be the complete graph, the cycle graph, and the path graph on n vertices, respectively. The graphs K_{3} and K_{4} are the unique minor obstruction for the graphs of treewidth at most 1 and 2 [21], respectively. The minor obstruction set for the class of graphs having treewidth at most 3 is $\left\{K_{5}, K_{2,2,2}, K_{2} \times C_{5}, M_{8}\right\}$ where $K_{2} \times C_{5}$ is the Cartesian product of K_{2} and C_{5}, and M_{8} is the Wagner graph, also called the Möbius ladder with eight vertices [1,16].

Robertson and Seymour [12] gave a characterization for the classes of graphs of branchwidth at most 1 and at most 2. The graphs K_{3} and P_{4} are forbidden minors for the graphs of branchwidth at most 1. For the class of graphs of branchwidth

[^0]at most 2 , its minor obstruction is the same as treewidth, which is K_{4}. The graphs of branchwidth at most 3 have four minor obstructions; $\left\{K_{5}, K_{2,2,2}, K_{2} \times C_{4}, M_{8}\right\}$ [3].

One of the main results of this paper is to find the minor obstruction set for the class of graphs of mm-width at most 2. Note that the class of graphs with bounded mm-width is closed under taking minor, as shown in Corollary 2.3. Our main result is the following.

Theorem 3.17. Let $\mathcal{O}=\mathcal{O}_{3} \cup \mathcal{O}_{4} \cup \mathcal{O}_{5} \cup \mathcal{O}_{6}$ be the set of 42 graphs in Figs. 1, 5-7. A graph G has mm-width at most 2 if and only if G has no minor isomorphic to a graph in \mathcal{O}.

The exact value of some width-parameters for grid graphs is well known. For an integer $k \geq 1$, the branchwidth and treewidth of the $k \times k$-grid are k [12,17], and the rank-width of the $k \times k$-grid is $k-1$ [7]. From the inequality $\operatorname{rw}(G) \leq \operatorname{mmw}(G) \leq \max (\operatorname{brw}(G), 1)$ [20], the mm-width of the $k \times k$-grid is either $k-1$ or k. Our second result is that the latter is the right answer when $k \geq 2$.

Theorem 4.7. The $k \times k$-grid has mm-width k for $k \geq 2$.
Section 2 lists some of the definitions, including a tangle, and provides preliminaries for the maximum matching width. In Section 3 we identify the minor obstruction set for graphs with mm-width at most 2. Section 4 gives the result for the precise mm-width of the square grids.

2. Preliminaries

Every graph $G=(V, E)$ in this paper is finite and simple. For a set $X \subseteq V(G) \cup E(G)$, we write $G \backslash X$ to denote the graph obtained from G by deleting all vertices and edges in X. If $X \subseteq E(G)$, we write G / X to denote the graph obtained from G by contracting the edges in X. If $X=\{x\}$, then we write $G \backslash x$ and G / x instead of $G \backslash X$ and G / X, respectively. If a subgraph G^{\prime} of G with $V\left(G^{\prime}\right)=X$ contains all the edges of G whose both ends are in X, then we call G^{\prime} induced by X and write $G^{\prime}:=G[X]$. For a graph G and disjoint subsets $X, Y \subseteq V(G)$, let $E_{G}[X, Y]$ (or $E[X, Y]$) denote the set of all edges $e=u v$ where u is in X and v is in Y, and let $G[X, Y]=G(X \cup Y, E[X, Y])$. A graph G is k-connected if $|V(G)| \geq k$ and $G \backslash X$ is connected for every $X \subset V(G)$ with $|X|<k$. A bridge is an edge e such that $G \backslash e$ has more components than G. A block is either a bridge as a subgraph or a maximal 2-connected subgraph.

We say that a tree is ternary if all vertices have degree 1 or 3 . A branch-decomposition of a finite set X is a pair (T, \mathcal{L}) of a ternary tree T together with a bijection \mathcal{L} from the leaves of T to X. Note that an edge $a b$ of T partitions the leaves of T into two parts, say A and B. We say an edge e induces the partition (A, B). A function $f: 2^{X} \rightarrow \mathbb{Z}$ is symmetric if $f(A)=f(X \backslash A)$ for all $A \subseteq X$, and the function f is submodular if $f(A)+f(B) \geq f(A \cup B)+f(A \cap B)$ for all $A, B \subseteq X$. For each edge e of T, and a symmetric, submodular function f, the f-value of e is equal to $f(A)=f(B)$ where (A, B) is the partition induced by e. The f-width of a branch-decomposition (T, \mathcal{L}) is the maximum f-value of an edge of T, and the f-width of X is the minimum value of the f-width over all possible branch-decompositions of X. This notion of f-width provides a link between several width parameters.

For $A \subseteq E(G)$, let $b r: 2^{E(G)} \rightarrow \mathbb{Z}$ be the function so that $\operatorname{br}(A)$ is the number of vertices that are incident to both an edge in A and an edge in $E(G) \backslash A$. The branchwidth of G, denoted by $\operatorname{brw}(G)$, is the br-width of $E(G)$.

For $A \subseteq V(G)$, let $r: 2^{V(G)} \rightarrow \mathbb{Z}$ be the function such that $r(A)$ is the rank of the adjacency matrix between A and $V(G) \backslash A$ over \mathbb{F}_{2}. The rank-width of G, denoted by $\operatorname{rw}(G)$, is the r-width of $V(G)$.

Let $\mathrm{mm}_{G}: 2^{V(G)} \rightarrow \mathbb{Z}$ be the function such that $\mathrm{mm}_{G}(A)$ is the size of a maximum matching in $G[A, V(G) \backslash A]$. Note that the function mm_{G} is symmetric and submodular [15]. We use mm instead of mm_{G} if the host graph G is clear from the context. The maximum matching width of G, denoted by $\operatorname{mmw}(G)$, is the mm-width of $V(G)$.

A graph H is a minor of a graph G if H can be constructed from G by deleting edges, deleting vertices, and contracting edges. We call a graph G minor-minimal with respect to a property \mathcal{P} if G has \mathcal{P} but no proper minor of G has \mathcal{P}. A graph G is a forbidden minor of a graph class \mathcal{C} if $H \notin \mathcal{C}$ whenever H has a minor isomorphic to G. Robertson and Seymour [13] state that the collection of minor-minimal graphs outside a minor-closed graph class is finite. The collection is called the minor obstruction set.

A graph is chordal if every induced cycle in the graph has length 3 . A chordalization of a graph G is a chordal graph H such that $V(H)=V(G)$ and $E(G) \subseteq E(H)$. An intersection graph G over a family $\left\{A_{i}\right\}$ of sets is the graph with $V(G)=\left\{A_{i}\right\}$ and $E(G)=\left\{A_{i} A_{j}: A_{i} \cap A_{j} \neq \emptyset\right\}$. Remark that a graph is chordal if and only if it is the intersection graph of the edge sets of subtrees of a tree [6].

2.1. Maximum matching width

Jeong, Sæther, and Telle [8] gave a new characterization of graphs of mm-width at most k as an intersection graph by the following theorem. A tree is called nontrivial if it has at least one edge and a tree is subcubic if all vertices have degree at most 3.

Theorem 2.1 ([8]). The maximum matching width of a graph G is at most k if and only if there exist a subcubic tree T and a set $\left\{T_{x}\right\}_{x \in V(G)}$ of nontrivial subtrees of T such that

Download Persian Version:
https://daneshyari.com/article/10151234

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: jjisu@kaist.ac.kr (J. Jeong), seong@kias.re.kr (S. Ok), gwsuh91@kaist.ac.kr (G. Suh).

