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a b s t r a c t

The celebrated theoremof Robertson and Seymour states that in the family ofminor-closed
graph classes, there is a unique minimal class of graphs of unbounded tree-width, namely,
the class of planar graphs. In the case of tree-width, the restriction to minor-closed classes
is justified by the fact that the tree-width of a graph is never smaller than the tree-width
of any of its minors. This, however, is not the case with respect to clique-width, as the
clique-width of a graph can be (much) smaller than the clique-width of its minor. On the
other hand, the clique-width of a graph is never smaller than the clique-width of any of its
induced subgraphs, which allows us to be restricted to hereditary classes (that is, classes
closed under taking induced subgraphs), when we study clique-width. Up to date, only
finitely many minimal hereditary classes of graphs of unbounded clique-width have been
discovered in the literature. In the present paper, we prove that the family of such classes
is infinite. Moreover, we show that the same is true with respect to linear clique-width.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Clique-width is a graph parameter which is important in theoretical computer science, because many algorithmic
problems that are generally NP-hard become polynomial-time solvable when restricted to graphs of bounded clique-
width [4]. Clique-width is a relatively new notion and it generalises another important graph parameter, tree-width, studied
in the literature for decades. Clique-width is stronger than tree-width in the sense that graphs of bounded tree-width
have bounded clique-width, but not necessarily vice versa. For instance, both parameters are bounded for trees, while for
complete graphs only clique-width is bounded.

When we study classes of graphs of bounded tree-width, we may assume without loss of generality that together with
every graph G our class contains all minors of G, as the tree-width of a minor can never be larger than the tree-width of the
graph itself. In other words, when we try to identify classes of graphs of bounded tree-width, we may restrict ourselves to
minor-closed graph classes. However, when we deal with clique-width this restriction is not justified, as the clique-width
of a minor of G can bemuch larger than the clique-width of G. On the other hand, the clique-width of G is never smaller than
the clique-width of any of its induced subgraphs [5]. This allows us to be restricted to hereditary classes, that is, those that
are closed under taking induced subgraphs.
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Fig. 1. The tree representing the expression defining a C5 .

One of the most remarkable outcomes of the graph minor project of Robertson and Seymour is the proof of Wagner’s
conjecture stating that the minor relation is a well-quasi-order [13]. This implies, in particular, that in the world of
minor-closed graph classes there exist minimal classes of unbounded tree-width and the number of such classes is finite. In
fact, there is just one such class (the planar graphs), which was shown even before the proof of Wagner’s conjecture [12].

In the world of hereditary classes the situation is more complicated, because the induced subgraph relation is not a
well-quasi-order. It contains infinite antichains, and hence, there may exist infinite strictly decreasing sequences of graph
classes with nominimal one. In other words, even the existence of minimal hereditary classes of unbounded clique-width is
not an obvious fact. This fact was recently confirmed in [8]. However, whether the number of such classes is finite or infinite
remained an open question. In the present paper, we settle this question by showing that the family of minimal hereditary
classes of unbounded clique-width is infinite. Moreover, we prove that the same is true with respect to linear clique-width.

The organisation of the paper is as follows. In the next section, we introduce basic notation and terminology. In Section 3,
we describe a family of graph classes of unbounded clique-width and prove that infinitely many of them are minimal with
respect to this property. In Section 4, we identify more classes of unbounded clique-width. Finally, Section 5 concludes the
paper with a number of open problems.

2. Preliminaries

All graphs in this paper are undirected, without loops andmultiple edges. For a graph G, we denote by V (G) and E(G) the
vertex set and the edge set of G, respectively. The neighbourhood of a vertex v ∈ V (G) is the set of vertices adjacent to v and
the degree of v is the size of its neighbourhood. As usual, by Pn and Cn we denote a chordless path and a chordless cycle with
n vertices, respectively.

In a graph, an independent set is a subset of vertices no two of which are adjacent. A graph is bipartite if its vertices
can be partitioned into two independent sets. Given a bipartite graph G together with a bipartition of its vertices into two
independent sets V1 and V2, the bipartite complement of G is the bipartite graph obtained from G by complementing the
edges between V1 and V2.

Let G be a graph and U ⊆ V (G) a subset of its vertices. Two vertices of U will be called U-similar if they have the same
neighbourhood outsideU . Clearly,U-similarity is an equivalence relation. The number of equivalence classes ofU-similarity
will be denotedµ(U). Also, by G[U]wewill denote the subgraph of G induced by U , that is, the subgraph of Gwith vertex set
U and two vertices being adjacent in G[U] if and only if they are adjacent in G. We say that a graph H is an induced subgraph
of G if H is isomorphic to G[U] for some U ⊆ V (G).

A class X of graphs is hereditary if it is closed under taking induced subgraphs, that is, G ∈ X implies H ∈ X for every
induced subgraph H of G. It is well-known that a class of graphs is hereditary if and only if it can be characterised in terms of
forbidden induced subgraphs. More formally, given a set of graphs M , we say that a graph G is M-free if G does not contain
induced subgraphs isomorphic to graphs inM . Then a class X is hereditary if and only if graphs in X areM-free for a setM .

The notion of clique-width of a graph was introduced in [3]. The clique-width of a graph G is denoted cwd(G) and is
defined as the minimum number of labels needed to construct G by means of the following four graph operations:

• creation of a new vertex v with label i (denoted i(v)),
• disjoint union of two labelled graphs G and H (denoted G ⊕ H),
• connecting vertices with specified labels i and j (denoted ηi,j) and
• renaming label i to label j (denoted ρi→j).

Every graph can be defined by an algebraic expression using the four operations above. This expression is called a
k-expression if it uses k different labels. For instance, the cycle C5 on vertices a, b, c, d, e (listed along the cycle) can be
defined by the following 4-expression:

η4,1(η4,3(4(e) ⊕ ρ4→3(ρ3→2(η4,3(4(d) ⊕ η3,2(3(c) ⊕ η2,1(2(b) ⊕ 1(a)))))))).

Alternatively, any algebraic expression defining G can be represented as a rooted tree, whose leaves correspond to the
operations of vertex creation, the internal nodes correspond to the ⊕-operations, and the root is associated with G. The
operations η and ρ are assigned to the respective edges of the tree. Fig. 1 shows the tree representing the above expression
defining a C5.

Let us observe that the tree in Fig. 1 has a special form known as a caterpillar tree (that is, a tree that becomes a path after
the removal of vertices of degree 1). The minimum number of labels needed to construct a graph G by means of caterpillar
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