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A B S T R A C T

Data heterogeneity is one of the most challenging problems in urban data analytics. When obtained from various
providers or custodians, datasets for the same domain themes may dramatically differ in formats due to many
reasons such as historical legacies, changing definitions or standards across jurisdictions etc. It hinders urban
analysts and researchers from understanding and using these data and makes results comparison and inter-
pretation obscure. Ontology, usually created by domain experts, offers a comprehensive representation of
knowledge including concepts, relations and properties in a domain. It defines the real world in abstract and
offers a universal and stable schema for data harmonisation. This paper proposes a fast, extensible solution for
eliminating data heterogeneity by using ontology. Starting from conceptualising domain knowledge to domain
ontology, we discuss a two-level mapping mechanism which bonds the nexus between data and ontology using
mapping rules. A semantic translation engine is also introduced to automate the data harmonisation process. A
real case - urban density indicators computation - also demonstrates the usability of the proposed framework and
the results show strong potentials for applying this method to broader urban analytics application scenarios.

1. Introduction

Over the next three decades, more than half of the world's popula-
tion is expected to live in cities. While cities occupy about 2% of land
mass worldwide, they produce more than 80% of global GDP (Dobbs
et al., 2011), which is a large economic footprint. Cities also contribute
more than 70% of the world's greenhouse gas emissions which add
significantly to severe environmental footprint (UN-HABITAT, 2011).
In addition to these are several other challenges associated with urba-
nisation that impact the quality of life, public services accessibility,
housing affordability, and health.

Rapid urbanisation worldwide is known to challenge urban plan-
ning and management tasks as it brings treats and opportunities for
cities. In a current digital era, data management is considered as the
main enabler in urban planning, management, and decision-making.
However, urban data is still challenged by its notorious heterogeneity
(Psyllidis, Bozzon, Bocconi, & Titos Bolivar, 2015; Rajabifard, Ho, &
Sabri, 2016). The new streams of big data have further complicated
these issues. Big data is usually composed of volumetric and complex
data from various sources (e.g. sensor data, social media, and enterprise
data) that need classic decision-making organisations to revise their
regulatory frameworks for effective utilisation (Sabri, Rajabifard, Ho,

Namazi-Rad, & Pettit, 2015). Urban planners are still struggling to in-
terpret the various dimensions of available urban data; particularly
when required to understand and plan for complex urban issues such as
high-rise building development and its impact on urban temperature.
The main challenge is the ability to effectively source, access and
leverage the appropriate data for evidence-based planning and decision
making.

Urban development analyses involve multi-disciplinary data gath-
ering and analytics (e.g. buildings, infrastructures, populations, and
green spaces). As a result, the multi-disciplinary and multi-scale data
challenges of urban analytics make the task unique and complex. In
general, each discipline has its own data sources that need to be stan-
dardised for interoperability, harmonisation and integration for ana-
lysis and modelling, fostering complex planning and decision-making
tasks.

There have been several initiatives around the world to address the
issues of urban data accessibility and interoperability. Examples are the
Australia Urban Research Infrastructure Network (AURIN) (Sinnott
et al., 2015), Urban Big Data Centre (UBDC) in the UK (Thakuriah,
Dirks, & Keita, 2016), and the University of Chicago's Urban Centre for
Computation and Data (UrbanCCD) (Catlett et al., 2014). These in-
itiatives and several other similar platforms provide urban researchers
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and decision-makers unique access to thousands of datasets and ana-
lytic tools. However, notwithstanding these initiatives, there are still
challenges in harnessing data from different sources and the integration
of diverse types of data for robust analyses. For instance, urban plan-
ning issues such as decision making for housing affordability need data
about land use, income, population density, and transport. While these
data might be available through existing platforms as aforementioned,
automated data integration is not possible due to data heterogeneity.
Another limitation is the provenance and extensibility of data used and
models developed within these platforms. As an example, Pettit et al.
(Pettit, Tanton, & Hunter, 2017) ascertain that the Shift-Share analysis
tool developed in AURIN defined names of derived variables and files
but does not provide users with information about input data and the
method. As such, the lack of provenance will limit the tools' and models'
ability to be scalable and extended to other contexts. Consequently, it
underscores the needs to apply the different domains knowledge in
determining the semantics of data and their ontology across different
jurisdictions while engaging with urban analytics, planning, and man-
agement (Catlett et al., 2014; Rajabifard et al., 2016; Thakuriah et al.,
2016; Villa, Molina, Gomarasca, & Roccatagliata, 2011).

As such, city planning and policy-making that are location-based
and evidence-based reportedly suffer from practical analytics and data-
driven decision making due to the lack of access to robust spatial
platforms and data sharing infrastructures (Kyttä, Broberg, Tzoulas, &
Snabb, 2013; Sabri, Rajabifard, Ho, Amirebrahimi, & Bishop, 2016). In
addition, current geospatial databases are used for local- or domain-
specific analyses. As a result, city planning and urban development
monitoring activities are challenged by the lack of integrated spatial
planning and management due to the absence of organised and complex
spatial data infrastructures. Substantial work has been undertaken in
the past decade. For example, Benslimane et al. (Benslimane, Leclercq,
Savonnet, Terrasse, & Yetongnon, 2000) define a spatial ontology to
describe key features of urban applications, providing a foundation for
semantic reconciliation among heterogeneous spatial information
sources. Fonseca et al. (Fonseca, Egenhofer, Davis Jr, & Borges, 2000)
propose a creation of software components from diverse ontologies
using an object-oriented mapping as a way to share knowledge and
data. Raskin and Pan (Raskin & Pan, 2005) develop a collection of
ontologies using the web ontology language (OWL) that include both
orthogonal concepts (space, time, Earth realms, physical quantities,
etc.) and integrative science knowledge concepts (phenomena, events,
etc.) for their environmental research. Konstantinou et al.
(Konstantinou, Spanos, & Mitrou, 2008) also raise and discuss the
problem of mapping relational database contents and ontologies and
argue that the addition of formal semantics to the databases is im-
portant to make information searchable, accessible and retrievable.
Consistent with these efforts, Buccella et al. (Buccella et al., 2011)
design and implement a system called GeoMergeP to build a global
normalised ontology for integrating geographic data sources. They
devise two steps for this purpose. First, by applying a semantic en-
richment process on data, a top-level and domain ontology based on the
domain ontology of the source and the ISO standards is derived; then
continue with a merging process, a shared vocabulary or global on-
tology is created out of the enriched ontologies. When all data sources
are mapped to the global ontology, a federated database is formed for
use. Pileggi and Hunter (Pileggi & Hunter, 2017) introduce their on-
tological approach for establishing the interoperability among hetero-
geneous datasets for urban indicators computation. In evaluating these
previous efforts, a key observation is that most of them parse datasets
into a semantic format (e.g., tuples) and provides data discovery and
reasoning capabilities by adopting semantic technologies. There are,
however, two main drawbacks to these methods. First, by converting
and storing datasets as semantic format, an extra copy of data has to be
maintained, and it will become intractable for data update and syn-
chronisation. Second, in geospatial and urban analysis domain, a lot of
existing models (e.g., road network connectivity, spatial association,

agglomeration, clustering, isochrone (Day, Chen, Ellis, & Roberts, 2016;
Day, Chen, Ellis, & Roberts, 2017; Yiqun Chen & Rajabifard, 2017;
Yiqun Chen, Rajabifard, Spring, Gouldbourn, & Griffin, 2016) and
procedures (e.g., spatial union, join, buffer, intersect, clip) are not de-
signed for consuming semantic data format or compatible with se-
mantic technologies. They expect inputs described in traditional geos-
patial formats while eliminating the heterogeneous data issues, thus,
improving their usability.

This paper proposes an ontology-based framework for data hetero-
geneity elimination by focusing on data accessibility and integration,
including provenance and extensibility. It starts with conceptualising
domain knowledge and developing this into a domain ontology. It
continues with the introduction of a two-level mapping mechanism,
which bonds the nexus between data and ontology using semantic en-
richment rules. This approach is different from existing methodologies
for semantic enrichment of geospatial data, which converts the raw
data layer format into a uniformed structure described by the ontology
schema. This approach, as explained in Section 4, will mitigate the issue
of physically storing any extra data. Section 4 also introduces a se-
mantic translation engine that automates data harmonisation processes.
Section 6 explains and demonstrates the usability of the proposed fra-
mework in a real case – urban density indicator computation. The last
section gives an account of how the proposed framework enables robust
urban analytics and decision making and offers suggestions for im-
provement while speculating on the future directions of ontology-based
spatial data harmonisation and urban analytics.

2. From domain knowledge to domain ontology

Ontologies are used for different purposes including intelligent in-
tegration of information, the Semantic Web, natural language proces-
sing, and knowledge management. From a computer science point of
view and in the context of knowledge acquisition, an ontology could be
defined as “a formal, explicit specification of a shared conceptualisa-
tion” (Staab et al., 2009). In this definition, “formal” refers to the
language that is used for the description of the ontology specifications.
This language has formal syntax and semantics and makes the ontology
descriptions machine readable and machine interoperable. In addition,
the word “explicit” refers to all the elements of an ontology, which are
explicitly defined (Staab et al., 2009).

In the area of knowledge management (KM), ontology plays a cru-
cial role (Sure, Staab, & Studer, 2009). There are several advantages in
developing ontologies for urban analytics. The major advantage is that
ontology represents the domain knowledge based on a formal con-
ceptualisation. This type of representation allows the understanding of
objects, concepts, and other entities that are assumed to exist in an area
of interest (e.g. housing, transport, population) and the relationships
that hold among them (Guarino, Oberle, & Staab, 2009). For instance,
as illustrated in Fig. 1, the upper level indicates several features in
urban density domain, such as urban density parameters, their re-
lationships, and the geographical boundaries. These entities can be
conceptualised and structured in a diagram form, shown in the lower
level, as a basis for developing urban density ontology.

Another positive side of ontology is the standard way of commu-
nication between different domains of knowledge. For instance, an
environmental planner might be interested in measuring urban heat
island, which deals with the concepts of building height, vegetation,
and non-buildable areas. These concepts might be extractable from land
use databases with other names such as the number of building stories,
green spaces, and open spaces. Hence, the lack of standardised and
common language may lead to overlooking the appropriate data.

The other important aspect of ontology is the ability to facilitate
better communication between different domain experts by using a
standardised common language. Also, ontology facilitates the commu-
nication between the human and the machine. It is possible to transfer
domain knowledge to domain ontology, which is a machine-readable
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