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A B S T R A C T

Convolutional Neural Networks (CNNs) have achieved great success for action recognition. Technically,
extracting effective long-range temporal dynamics is critical for such temporal tasks. This paper proposes a
temporal stochastic linear encoding (TSLE) to construct the global video representations for action recognition,
which can be embedded inside of CNN as a layer. The advantages of temporal stochastic linear encoding networks
(TSLEN) are: (a) Compared with algorithms focusing on the short-term motions it can implement an easy yet
robust manipulation of long range temporal clues. (b) We propose an arbitrarily directional motion boundary
(ADMB) unit, which can save the training time and hard disk space. (c) The proposed TSLE unit maps the
highly-dimensional videos to the compact spatio-temporal representations. On the efficiency and recognition
accuracy experimental results demonstrate that the proposed TSLENs achieve competitive performance among
the effective algorithms.

1. Introduction

Dramatic progress has been achieved by convolutional neural net-
works (CNN) on video-based recognition tasks [1–4] owing to its
applications in many areas like security and behavior analysis. The
main problems remain to be solved, in action recognition, are how
to extract long-range temporal dynamics [5–7]. Recent works such
as [1,2,8–10] have pointed out that long-range temporal dynamics are
very important cues for action classification. Indeed, efficient video ar-
chitectures should allow for temporal evolution of the long-range video
sequences. However, mainstream proposals generally enable ConvNet
frameworks [5–7,11] to extract short-range motions, and some attempts
can primarily be categorized into two practices [5,6]. The first type is
that 2D convolutions are extended to 3D spatio-temporal filters for the
sake of temporal evolution of multiple clips [12]. Limited to the large-
scale parameters and computational costs caused by the extra temporal
dimension, 3D-CNN seems relatively uncompetitive. Specifically, 3D
CNNs abandon the benefits of transfer learning, in which the CNN
architectures are initialized by the models matured in 2D image domain.
By decoupling spatial and temporal domains the second type utilizes
video frames and optical flow fields to train ConvNets [5] respectively.
The former focuses on the single frame appearance while the latter, by
stacking multiple optical flow images, exacts the short-range motions.
However, the advantages of CNNs over traditional methods are not
so evident under the constraints of modeling capacities of shallow
networks and the extremely-starved video datasets. Therefore, very
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deep two-stream ConvNets (e.g. VGGNet [13], GoogLeNet [14]) are
trained to boost the recognition performances [15,16]. Based on the
decoupled idea, the trajectory-pooled deep convolutional descriptors [7]
are proposed to accumulate the feature maps along motion trajectories,
and achieve competitive performances of recognition.

Despite the competitive performances of short-range dynamics algo-
rithms, long-range temporal dependency remains to be crucial to further
improve the video classification. Following the pipeline that motivates
long-range temporal models, there are a few attempts [1,2,8,17–21] to
construct the long-range dependency. First, restricted in the postulate
that a function is capable of ordering the video frames temporally,
the parameters of the rank-pooling machines well capture long range
temporal information for action recognition [1,2,8] and elaborately
summarize the video contents into compact representations, namely
dynamic image and dynamic feature map respectively [22]. More im-
portantly, either dynamic image or dynamic map network can directly
fine-tune the existing CNN models advanced in 2D image. Nevertheless,
learning the parameters of the rank pooling machines in an end-to-end
manner suffers the optimization difficulty. It is necessary to solve the
precise but not approximate gradients in the stochastic gradient descent
process, and solving the specific gradients with respect to the parameters
is a non-trivial challenge. Second, complex long-range temporal dynam-
ics can be modeled by Long-term Recurrent Convolutional Networks
(LRCNs) [19], which are directly connected to modern visual CNN
models. It also can be jointly trained to simultaneously learn temporal
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Fig. 1. Temporal Stochastic Linear Encoding network (TSLEN) for action
recognition. It consists of two independent parts, precise sampling and stochastic
linear encoding (SLE), which jointly encodes the long-range temporal dynamics.

dynamics and spatial representations. Incorporating nonlinearities into
the network state update is appealing in that RNNs [23–25] can map
variable-length inputs to variable-length outputs and model the complex
dynamics of videos. Meanwhile the RNN [26–28] can be optimized with
the back-propagation, which means that the CNN+LSTM [19] are end-
to-end trainable.

To construct the long-range temporal dynamics, one of the common
practices is to sample multiple clips and classic approaches such as
bag-of-visual-words can be considered to encode multiple features.
We know that a complete action is composed of multiple sub-actions.
However, owing to the completely random sampling process in each
segment [8,17], the sampled clips in the adjacent segment may be
too closer to represent the various sub-actions. What comes with it is
information redundancy of the same sub-action, that is, the sampled
ones between the consecutive segments have risk of missing the next
sub-action, which can lead to the misclassification of ConvNets.

Due to the fact that almost all the actions in UCF101 and HMDB51
constitute of multiple sub-actions uniformly spanning the temporal
dimension and complex actions tend to be composed of multiple stages,
how to keep the uniformity of video sampling is the first question worth
exploring. With the counter clips generated in the randomly sampling
process, the learned parameters will be biased towards the direction that
is not conducive to correct classification. In addition, various encoding
methods are devised to aggregate the snippet-level features to a video-
level extraction. TLE constructs the outer product of convolutional
features accumulating the features into a super vector [21], Evenly
averaging and maximum implement the point-wise sum and max opera-
tors [17], 3D pooling conducts the clip-level consensus in temporal axis,
and VLAD introduces (i) partition of data, (ii) partition of feature, and
(iii) local PCA for codebook enhancement [29], which can be integrated
together to boost the performances. We make finding that the forms of
encoding methods remain to be an open question.

Motivated by the above observations, we propose a novel spatio-
temporal encoding method called temporal stochastic linear encoding
(TSLE) shown in Fig. 1, which aims to be at the spot aggregating
highly-dimensional video features into compact representations with
lower dimensions. To this end, the TSLE can be implemented in two
steps. First, we propose a novel precise sampling to ensure that the
key sequences are sampled as much as possible in order to make the
sampling process miss the counter samples. Second, the final feature
representations over the whole video can be constructed through a novel
stochastic linear encoding (SLE). Notably, both parts are indispensable
to the goal, and combination of the precise sampling and the stochastic

Fig. 2. Precise sampling strategy: One input video is divided into 𝐾 segments
and a short snippet is randomly selected from each segment. The selection range
𝜏′𝑡𝑖 ∈

[

𝑁∕3𝐾, 2𝑁∕3𝐾 − 𝐿
]

determines the uniform sampling process.

linear encoding can comprehensively construct the long-range temporal
clues. The goal of the paper is not to achieve high performance, but to
show that TSLEs are computationally efficient, robust, and compact. To
confront with high risk of over-fitting, very deep ConvNets [13,30] are
introduced to train the CNNs, and the Kinetics dataset is leveraged to
unleash full potentials.

The rest of the paper is organized as follows: Section 2 describes our
temporal stochastic linear encoding networks. This is followed by the
datasets and implementation details in Section 3, and the experiments
are clarified in Section 4. We conclude this paper in Section 5.

2. Temporal stochastic linear encoding (TSLE)

In this section, we give a detailed description of temporal stochastic
linear encoding. We first verify whether the counter samples exist and
then introduce the principles of the stochastic linear encoding (SLE)
that conducts robust and compact representations. Finally, based on the
hand-crafted motion boundary [31,32] we introduce how to construct
arbitrarily directional motion boundary (ADMB) to save disk spaces and
reduce the training time, which is embodied inside of CNNs and trained
in an end-to-end manner.

2.1. Precise sampling strategy

In the common algorithms, the usual routine is to separate one video
into multiple segments, and each segment generates one corresponding
snippet randomly. That is,𝐾 segments spanning the same video generate
𝐾 different stochastic clips, under the circumstances that the clips
sampled in any position of segments do not amount to uniform segments.
There is a situation that the adjacent snippets are randomly chosen at
very close interval, which may result in the redundant characteristics
and miss the key elements in the components of action. Therefore, the
completely random sampling strategy may cause a degree of uneven
sampling on the whole video. In this case certain snippets in the video
sequences may be not relevant to the action itself, and we can call such
samples counter clips. Once selected in the sampled process, they will
be marked as the corresponding action label as well as the representative
ones. This tends to move the trained CNN parameters towards an
erroneous inductive bias path and lead to inferior performances in the
test.

Motivated by the analysis above, we proposed a precise snippet-
sampling strategy taking into account randomness and representative-
ness of clips (see Fig. 2). Given the video with 𝑁 sequences, the stacked
length of snippets 𝐿, and the segment set 𝑆1, 𝑆2,… , 𝑆𝐾 , we change the
sampling range from

[

0,𝑁∕𝐾 − 𝐿
]

to
[

𝑁∕3𝐾, 2𝑁∕3𝐾 − 𝐿
]

. By the root this
setting is the greatest degree of avoiding counter samples. In this way
the precise sampling can select each clips located in the middle range of
each segment. This implementation can keep the distance between the
sub-actions from being too close, ensuring that the sampled clips evenly
distribute throughout the whole video as much as possible.
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