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a b s t r a c t 

Macroscale simulations of shocked particulate flows rely on closure laws to model momentum transfer 

between the fluid and dispersed particles phase. Developing closure models from experimental data is 

expensive. Robust and accurate closures laws can be obtained through surrogate modeling using high- 

resolution mesoscale simulations. However, development of surrogate models for drag from 3D high- 

fidelity simulations of shock interaction with clusters of particles can be computationally prohibitive. 

This paper explores various strategies to efficiently construct surrogate models for drag on particles in 

the shocked flow. The cost of generating training data is reduced by selecting optimal grid resolutions, 

particle arrangements in clusters, and size of particle clusters, i.e., by selecting suitable representative vol- 

umes (RVEs). Different surrogate modeling strategies such as multi-fidelity and parameter-by-parameter 

construction approaches are examined. The surrogate models obtained from the different methods are 

compared to determine the most cost-effective machine learning based surrogate modeling method in 

the context of shock-particle interactions. 

Published by Elsevier Ltd. 

1. Introduction 

Shocked particle-laden flows are found in many engineering 

processes such as combustion in solid rocket motors ( Carlson and 

Hoglund, 1964 ), pneumatic conveyance of particles in industries 

( Crowe, 1982 ), thermal spraying techniques ( Dongmo et al., 2008 ), 

explosive dispersal of particles ( Boiko et al., 1997 ), etc. Such pro- 

cesses involve large numbers of solid particles transported in a 

shocked flow field, with length scales ranging from particle scale 

( μm ) to process scale ( m ). Particle resolved simulations of such en- 

gineering processes are cost prohibitive and impractical. The com- 

putational burden of resolving each particle in the flow field can 

be circumvented by modeling the particle phase either as a cloud 

of dimensionless points ( Davis et al., 2017; Jacobs and Don, 2009 ) 

or as a continuous two-phase medium ( Saito et al., 2003; Shotor- 

ban et al., 2013 ). In such methods, the exchange of momentum and 

energy between the particulate and fluid phases are not computed 

directly, but are obtained from empirical laws ( Boiko et al., 1997; 

Parmar et al., 2010 ) or surrogate models ( Lu et al., 2012; Sen et al., 

2018a,b ; 2017 ) of drag and Nusselt number as functions of the local 
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flow parameters such as Mach number ( M s ), Reynolds number ( Re ), 

particle volume fraction ( φ), etc. This paper compares techniques 

for constructing accurate and computationally affordable surrogate 

models for drag from ensembles of three-dimensional mesoscale 

computations. 

Typically, models for drag in shocked particle-laden flows are 

obtained from correlations developed via physical experiments. 

Such experiments ( Boiko et al., 1997; Ling et al., 2012 ) are expen- 

sive and confined to restricted regions in parameter spaces. Re- 

cently, there has been considerable effort s in learning drag laws 

from ensembles of resolved mesoscale computations ( Lu et al., 

2012; Sen et al., 2018a,b ; 2017 ; 2015 ). In this approach, several 

particle-resolved computations are performed to train a surrogate 

model for the drag coefficient ( 〈 C D 〉 ) in particle clouds as func- 

tions of M s and φ. While the surrogate-based approach spans a 

more extensive parameter space than physical experiments, per- 

forming large number of such simulations to generate the training 

data can be computationally intensive and often prohibitively ex- 

pensive. This is particularly true when 3D mesoscale computations 

are used to generate the training data. 

The first step to mitigate the computational cost for gen- 

erating training data is to select a robust surrogate modeling 

technique, i.e., one which offers high rates of convergence for 

relatively sparse training data sets. Artificial neural networks 
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( Ghaboussi et al., 1998; Hambli, 2011; Lu et al., 2012 ), Radial 

Basis Functions ( Sen et al., 2015 ), Polynomial Stochastic Collo- 

cation Methods ( Ma and Zabaras, 2009 ), Kriging-Based Methods 

( Zhao et al., 2010 ) are popular methods for this purpose. Previous 

work ( Sen et al., 2017 ; 2015 ) carefully examined these methods 

and showed that the Modified Bayesian Kriging (MBKG) method 

( Gaul et al., 2015 ) is particularly suited for sparse inputs and con- 

verges monotonically with fewer, possibly noisy training data. Pre- 

viously, the MBKG method has been used for developing surro- 

gate models for drag and Nusselt number in shock-particle inter- 

action problems ( Das et al., 2018; Sen et al., 2018a,b ; 2017 ). How- 

ever, these applications have so far been limited to training data 

obtained from 2D mesoscale simulations. But in 2D simulations 

particles are represented by cylinders, rather than spheres and 

the incoming shock wave encounters higher blockage in 2D clus- 

ters of particle. Therefore, the drag is over-predicted in 2D simu- 

lations. Such modeling limitations in the 2D simulation of shock- 

particle interactions introduce inherent epistemic uncertainties in 

the surrogate model for the drag. The uncertainty propagates to 

the macroscale resulting in lower fidelity of the macro-response. 

This motivates the use of 3D computations for obtaining the train- 

ing data. 

Development of the surrogate models from high-fidelity 3D 

numerical simulation is computationally expensive. As shown in 

Sen et al. (2017) , for a 2D parameter space (i.e., when 〈 C D 〉 is a 

function of M S and φ only), an ensemble of 50–100 mesoscale 

simulations are required to construct the surrogate model for 

〈 C D 〉 ; typical 2D simulations require days of computing on multi- 

processor systems for such an ensemble—for 3D, weeks or even 

months of calculations would be required. Therefore, generating 

even a sparse training data set from 3D computations is expen- 

sive. The cost is increased further if higher-dimensional parameter- 

spaces are necessary. For example, at the later stage of shock- 

particle interaction, i.e., after the shock has passed over the parti- 

cles, the quasi-steady drag is a function of M s , φ, and Re . Therefore, 

the curse-of-dimension and the mesh size requirements in 3D sim- 

ulations make it nearly prohibitive to generate training data sets 

from high-fidelity mesoscale simulations. With current comput- 

ing hardware capabilities, it is marginally feasible to “brute force”

computations of 3D shock-particle simulations of ensembles large 

enough to extract surrogate models. However, a judicious choice of 

computational set-up, ensemble sizes and surrogate construction 

methods may provide strategies that will make utilization of 3D 

simulations more commonplace. 

This paper addresses the issue of reducing the computational 

cost for developing training data-sets from 3D mesoscale compu- 

tations. Two different strategies are adopted in pursuit of lower- 

ing the computational cost. First, the cost of generation of train- 

ing data from the high-fidelity mesoscale simulations is reduced 

by selecting the optimal mesh resolution and the most compact 

cluster configurations (i.e., representative volumes, RVEs) required 

for mesh and geometry independent results. To reduce the compu- 

tational cost of each simulation, first, grid convergence studies are 

performed to benchmark the minimum grid-resolution required to 

generate high-fidelity training data. The effect of cluster geometry 

on the average drag is then studied to decide the arrangement of 

particles in a cluster and the cluster size required for the simula- 

tions. It is important to study the effect of particle arrangements, 

i.e., whether to use structured ( Mehta et al., 2016; Regele et al., 

2014 ) or randomly Mehta et al., 2018 ) arranged clusters of parti- 

cles; because spatial symmetry in a structured (e.g. simple cubic, 

face-centered cubic(FCC) ( Mehta et al., 2016 ), body-centered cu- 

bic(BCC)) particle cluster can be exploited to reduce the computa- 

tional cost by choosing a smaller length for the cluster in the trans- 

verse directions of the shock propagation. However, the selection 

of a structured arrangement introduces bias in the training data for 

surrogate modeling; Mehta et al. (2018) showed that particles in 

a simple cubic and FCC arrangement experience higher peak drag 

than particles in a random arrangement. In this work, the study on 

the effects of particle arrangement is further extended by compar- 

ing results obtained from numerical simulations of shock interac- 

tions with simple cubic, FCC, BCC and randomly arranged clusters 

of particles. 

The size of the particle clusters is another parameter that needs 

to be chosen carefully while setting up the numerical experiments 

to obtain training data. The size of a particle cluster in a simu- 

lation may affect the averaged drag force on the particles. In a 

smaller cluster, the particles at the boundary of the cluster will 

influence the 〈 C D 〉 . Such boundary effects can be mitigated by 

increasing the size of particle clusters in the simulations. But in- 

creasing the cluster size increases the computational cost as well. 

To determine the minimum size of particle cluster required to ob- 

tain results independent of the cluster size, simulations of shock 

interaction with particles are performed using clusters of varying 

sizes. 

The total computational cost of surrogate model development 

is further reduced by using multi-fidelity surrogate modeling tech- 

niques ( Sen et al., 2018a,b ). In the multi-fidelity techniques, a pre- 

liminary low-fidelity surrogate model is obtained from compu- 

tationally inexpensive simulations. Later, high-fidelity simulations 

are used to rectify the error in the low-fidelity surrogate model. 

A previous work used surrogate models obtained from 2D coarse 

grid simulations of shock-particle interaction as the initial low- 

fidelity model and showed that the MBKG method creates a multi- 

fidelity model with low error ( Sen et al., 2018a,b ) from 2D sim- 

ulation data. In the current work, the MBKG method is used to 

develop multi-fidelity surrogate models from 3D mesoscale sim- 

ulations. Two different strategies are explored to obtain multi- 

fidelity surrogate models from 3D simulations of shocked partic- 

ulate flows. First, an initial low-fidelity model for multi-fidelity 

surrogate model is obtained from: ( (1) 3D coarse mesh simula- 

tions, i.e. low-resolution models; and (2) 2D simulations, i.e. low- 

dimensional models. Then, both these initial surrogate models are 

corrected with a small number of 3D high-fidelity simulation data 

using the MBKG method. The two multi-fidelity surrogate models 

are compared to determine the cost-effectiveness of the methods. 

Despite using an initial low-cost surrogate model, the multi- 

fidelity methods can still be expensive because of the computa- 

tional cost associated with even the relatively few high-fidelity 3D 

simulations. The number of simulations required along each pa- 

rameter direction, to develop the preliminary surrogate models are 

∼O(10). Therefore, in a 2-parameter space ( M s , φ) the total sim- 

ulations required for the development of the multi-fidelity surro- 

gate models are ∼O(100). However, if M s and φ are considered or- 

thogonal bases of the functional space then the surrogate model 

〈 C D 〉 = f ( M s , φ) , can be constructed from ∼20 simulations. There- 

fore, the orthogonality assumption in the parameter space pro- 

vides another route to develop economical surrogate models; how- 

ever, the error in the surrogate model entailed by the orthogonal- 

ity assumption needs to be assessed. In this work, surrogate mod- 

els obtained from the three machine-learning based metamodeling 

strategies discussed above are evaluated based on the error and 

associated computational cost. 

The rest of the paper is organized as follows: In Section 2 , 

the numerical methods used to obtain the simulation based sur- 

rogate model are described. The numerical method used for the 

mesoscale simulations is validated against benchmark results in 

Section 3.1 . The grid convergence study is performed to find out 

the optimal grid resolution required for the high and low fidelity 

simulations in Section 3.1 . The effect of the particle arrangement 

on the average drag in a cluster is studied in Section 3.2 . The ef- 

fect of cluster size on the average drag is studied in Section 3.3 . 
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