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a b s t r a c t

Many technical systems like manufacturing plants or software applications generate large event se-
quences. Knowing the temporal relationship between events is important for gaining insights into the
status and behavior of the system. This paper proposes a novel approach for identifying the time lag
between different event types. This identification task is formulated as a binary integer optimization
problem that can be solved efficiently and close to optimality by means of a linear programming
approximation. The performance of the proposed approach is demonstrated on synthetic and real-world
event sequences.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Log files are a common way for collecting status information
of technical systems and thus, are a valuable source for analyzing
faults or anomalous system behavior. The data contained in these
files can be interpreted as a sequence of events. In the most basic
case an event contains some kind of label and a timestamp. In ad-
dition, events are often enriched with supplementary information
like messages, component description, or input data.

Events normally do not appear independently. Instead, they
influence and trigger each other. With a certain complexity of
the monitored system, a manual inspection of all events becomes
impractical. Thus, from the 1980s on, efforts for automating event
processing were initiated. Early approaches were expert systems,
where a domain expert explicitly defined rules and dependen-
cies between event types, cf. Houck, Calo, and Finkel (1995) and
Kettschau, Bruck, and Schefczik (2002). Creating rules, however,
is very time consuming, difficult, and error prone and transferring
rules to a new domain is often not possible.

Generic approaches utilize timewindows for finding correlated
event pairs based on their relative frequency, cf. Bouandas and Os-
mani (2007), Jakobson and Weissman (1993), and Mannila, Toivo-
nen, and Verkamo (1997). A major difficulty here is the selection
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of an appropriate window size. A too small window may lead to
missed correlated event pairs, while a too large window size may
cause false positive correlations.

In Zeng, Tang, Li, Shwartz, and Grabarnik (2015), temporal de-
pendencies among events are exploited for identifying correlated
event pairs. Therefore, the time lag between two event types is
estimated by means of expectation–maximization. Zöller, Baum,
and Huber (2017) employ the energy distance correlation mea-
sure together with the iterative closest point algorithm known
from computer vision for time lag estimation. Both approaches are
considered as current state-of-the-art and serve as a performance
reference for event correlation throughout this work.

In this paper, a novel approach for estimating the time lag
between event pairs is proposed. This estimation is formulated as
binary quadratic optimization problem. To allow for an efficient
solution also for large event sequences, the optimization problem
is approximated by considering a linear version of the problem
and by relaxing the binary solution to be continuous. It is shown
that the approximation error is limited and thus, a near-optimal
solution can be found in polynomial time.

The next section gives a problem description. Section 3 de-
scribes the linear programming based time lag identification. Nu-
merical results on synthetic and real-world data are provided in
Section 4. The paper concludes with Section 5.

2. Problem statement

It is assumed that the system under consideration generates a
sequence of events E = {e1, e2, . . . , ek} with pairs ei = (Ei, ti),
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where Ei ∈ Ω is the actual event stemming from an event space
Ω and ti is the timestamp of the event with 0 ≤ ti ≤ ti+1 and
i = 1, 2, . . . , k.

The focus of this paper is on identifying the temporal rela-
tionship between two types of events A and B from Ω . Let EA =

{a1, a2, . . . , am} be a sub-sequence of E comprising all events of
type A. For simplicity and as we are merely interested on the
temporal dependency, from now on ai synonymously refers to the
timestampof the ith event in EA. Analogously, EB = {b1, b2, . . . , bn}
represents the timestamps of all events of type B in E .

To model the relation between events ai and bj we introduce a
latent assignment variable zij ∈ {0, 1}. This variable is equal to one
if ai triggers bj, otherwise zij = 0. As there are no arbitrary relations
in practical applications, we make the following assumptions.

Assumption 1. An event of type B can only be triggered by one
event of type A, i.e.,

∑m
i=1zij = 1 for all j = 1, . . . , n.

Assumption 2. An event of type A can trigger at most one event of
type B, i.e.,

∑n
j=1zij ≤ 1 for all i = 1, . . . ,m.

In the triggering case, i.e., where zij = 1, ai is called the trigger
event and bj is the response event. The response event follows the
trigger event with some time lag δ that is considered a random
variable, as this lag may vary due to (unknown) interferences
caused by the system. Thus, for specific event pairs ai and bj, the
actual time lag

δij = bj − ai

is considered a realization or sample of δ.

Assumption 3. A response event cannot occur before the trigger
event, i.e., if ai triggered bj than δij ≥ 0.

According to Zeng et al. (2015), the sample mean and sample
variance of δ can be calculated according to

µ = E[δ] ≜ 1
n

m∑
i=1

n∑
j=1

zij · δij , (1)

σ 2
= Var[δ] ≜ 1

n

m∑
i=1

n∑
j=1

zij · (δij − µ)2 , (2)

respectively.

3. Time lag identification

Estimating the time lag δ between events of type A and B is
considered as finding the correct assignment of trigger events to
response events such that the variance of δ is minimized. This
corresponds to the optimization problem

min
z

Var[δ] (3)

s.t. H · z = 1p ,

D · z ≤ 1p ,

∆ · z ≥ 0p ,

z ∈ {0, 1}p ,

with z ≜ [z11 z21 . . . zmn]
T being the vector of all assignment vari-

ables. The first three constraints reflect Assumptions 1–3 with 0p
and 1p being vectors of zeros and ones, respectively, of dimension
p = m · n, H ≜ In ⊗ 1m

T with identity matrix In of dimension n× n,
Kronecker product ⊗, and matrix transpose (.)T, D ≜ 1n

T
⊗ Im,

and ∆ ≜ diag(δ) being a diagonal matrix with elements from
δ ≜ [δ11 δ21 . . . δmn]

T being the vector of all time lags.

Given the previously introduced vectors z and δ, the variance in
(2) and (3) can be rewritten in vector notation to

Var[δ] =
1
n ·

((
δ ⊙ δ

) T
· z  

linear

−
1
n · zT · δ · δT · z  

quadratic

)
(4)

with ⊙ being the Hadamard element-wise product. Due to the
binary nature of z and the quadratic form in (4), the problem
in (3) corresponds to a so-called binary quadratic program. This
class of optimization problems is NP-hard in general (cf. Katayama
and Narihisa (2001)) and thus, a computationally feasible solution
merely exists for very short event sequences. To also allow the
identification of time lags in large event sequences, an approx-
imation is proposed that relies on the following two steps: (i)
neglecting the quadratic term zT · δ · δT · z in (4) and (ii) relaxation
of the binary constraint z ∈ {0, 1}p.

3.1. Linear approximation

Neglecting the quadratic term in (4) results in an approxima-
tion, which is linear and equivalent to the expected value E

[
δ2

]
.

Theorem 1. Replacing the objective Var[δ] by E
[
δ2

]
in the optimiza-

tion problem (3) provides an upper-bound approximation to (3). For
m = n, this replacement even leads to an optimization problem that
is equivalent to (3).

Proof. The quadratic term in (4) can be bounded from below by
means of a linear term according to

zT · δ · δT · z =

⎛⎝ m∑
i=1

n∑
j=1

δij · zij

⎞⎠2

(a)
≥

m∑
i=1

n∑
j=1

(
δij · zij

)2
(b)
=

m∑
i=1

n∑
j=1

δ2ij · zij = n · E
[
δ2

]
, (5)

where (a) holds because the time lags δij have to be non-negative
according to Assumption 3 and (b) follows from zk being binary.
With (5), it holds that

Var[δ] ≤
(
1 −

1
n

)
· E

[
δ2

]
,

i.e., (4) can be bounded from above by means of (1 − 1/n) · E[δ2]. In
terms of optimization this is equivalent tominimize E[δ2], because
n is constant.

In case of m = n, any valid solution of (3) can only be altered
by swapping pair-wise assignments due to Assumptions 1 and 2. It
can be shown that swapping is only affecting the linear term in (4)
but not the quadratic term. Hence, worsening the optimal solution
z∗ of the optimization based on E[δ2] by swapping alsoworsens the
optimal solution of (3) and thus, z∗ is also optimal for (3). □

For the case m > n, both optimization problems are not
necessarily equivalent, as a valid assignment can also be altered by
changing the assigned trigger event for a (fixed) response event.
This may improve the solution of (3) but not the solution of the
modified problem. Thus, a small error is introduced by neglecting
the quadratic term. This error, however, is bounded as long as the
mean (1) is bounded.1 Furthermore, experiments have shown that
in many cases the optimal solution of the modified problem is still
the minimizer of (3).

1 With z∗
= arg minz E

[
δ2

[
= arg minz E [δ[ it follows that minz E

[
δ2

[
≥

Varz∗ [δ[−minz Var [δ[ ≥ 0, where Varz∗ [δ[ is the variance (4) evaluated at z = z∗ .
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