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This contribution presents a nonlinear model predictive control (MPC) scheme for the torque control of
permanent magnet synchronous machines. The control scheme is based on the nonlinear dq-model including
current-dependent inductivities and provides a desired torque in an energy-efficient way while accounting for
constraints on the DC link current, phase currents, and hexagonal voltage constraints. The MPC algorithm uses an
augmented Lagrangian method in combination with a real-time gradient method to allow for a computationally
efficient solution. Experimental results for a standard industrial drive show the performance, robustness, and
computational efficiency of the MPC with a sampling time of 500 ps.

1. Introduction

Permanent magnet synchronous machines (PMSMs) are increasingly
used in industrial and automotive drive systems, as they typically
achieve a high torque and power density and therefore are suitable
drives for highly dynamical and high precision applications such as
traction drives, electric power steering systems, or machine tools.

Recently, various model predictive control (MPC) strategies for
PMSMs have been developed in order to improve the control per-
formance compared to conventional control strategies such as field-
orientated control (FOC) (Schroder, 2009). These approaches can be
divided into two categories depending on the working principle of the
power electronics.

The finite control set MPC (FCS-MPC) approaches actuate the
switches of the power electronics directly, cf. e.g. Geyer (2011), Lang,
Yang, Long, Li, and Xu (2016), Liu and Hameyer (2015), Preindl and
Bolognani (2013b), Rodriguez et al. (2013) and Xie, Wang, Wang, Xu,
Kennel, Gerling, and Lorenz (2015), which limits the control space to a
finite set consisting of eight voltage vectors. The basic idea is to evaluate
all possible combinations of the control set elements over the prediction
horizon using a cost function. Thereby, the discrete nature of voltage
inverters is exploited, which leads to low switching frequencies of the
power electronics. On the other hand, the sampling time is directly
related to the switching frequency. As a consequence, the sampling time
must be very small in order to avoid large torque ripples. Furthermore,
the number of possible combinations of the control sets elements and
therefore the computation time increases exponentially with larger
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prediction horizons. Although more efficient computation algorithms
have been developed recently (Geyer & Quevedo, 2014), torque ripples
and short prediction horizons must in general be accepted in the case of
FCS-MPC (Preindl & Bolognani, 2015).

Opposed to FCS-MPC, continuous control set MPC (CCS-MPC) is
based on a continuous voltage set that is obtained by a modulation stage
between the torque controller and the power electronic, cf. e.g. Chai,
Wang, and Rogers (2013), Cimini, Bernardini, Bemporad, and Levijoki
(2015) and Preindl, Bolognani, and Danielson (2013). The sampling
frequency in CCS-MPC is typically much lower than in FCS-MPC, which
also implies a lower level of torque ripples. Moreover, the larger sam-
pling time enables longer prediction horizons and therefore a potentially
better overall control performance. However, solving the underlying
(nonlinear) optimization problem in real-time is still a computational
challenge and one of the main reasons why the field of CCS-MPC is still
considered being largely unexplored (Geyer, 2016).

In applications, where torque ripples are not critical, FCS-MPC
schemes achieve smaller switching losses compared to CCS schemes
(Geyer & Quevedo, 2015; Kohler, Manderla, & Malchow, 2017). How-
ever, if torque accuracy is important, FCS schemes have to increase
the switching and sampling frequency as stated above, which mitigates
this advantage of FCS-MPC over CCS-MPC (Geyer, 2016; Geyer &
Quevedo, 2015). Moreover, the high switching frequencies of FCS and
the correspondingly short sampling times are computationally hard to
realize.

In addition to torque accuracy, high performance applications such
as electric steering systems require a fast dynamic response to the
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desired torque over a wide operation range, e.g. from standstill to
maximum speed while guaranteeing an optimal exploitation of given
system constraints. The consideration of all these aspects within a real-
time CCS-MPC scheme is, as mentioned before, a challenging problem.
For instance, existing CCS-MPC approaches as those mentioned above
do not account for DC link current constraints, which are especially im-
portant in automotive applications, or do not consider flux weakening or
anisotropic machines (Chai et al., 2013; Cimini et al., 2015). Moreover,
the prediction horizon is often chosen small enough compared to the
system dynamics, in order to cope with the computational effort (Chai
et al., 2013; Cimini et al., 2015; Preindl et al., 2013).

In a previous publication of the authors (Englert, Griiner, & Graichen,
2017), a model predictive torque controller (also referred to as MPTC
in the literature) for PMSMs was developed that overcomes some of
the problems mentioned above. However, saturation and other parasitic
effects have not been considered so far. In this contribution, the previ-
ously presented MPC scheme (Englert et al., 2017) is extended in various
directions. The abovementioned effects are accounted for by considering
current-dependent system parameters such as the inductivities that are
identified at a PMSM test bench. In addition, the proposed nonlinear
MPC scheme considers DC link current constraints as well as the whole
control set, i.e. the exact hexagonal voltage constraint and not an
approximation of it, as it is typically done.

In view of the given system constraints and the very small sampling
time that is typically in the range of a few hundred microseconds,
real-time feasibility on embedded hardware is a challenge on its own.
In order to overcome this challenges, the nonlinear MPC approach
uses an augmented Lagrangian technique to effectively incorporate the
various constraints in combination with a real-time gradient method.
Experimental results, including a comparison with a standard field-
orientated control, show the robustness, performance, and computa-
tional efficiency. In particular, the MPC computation times of less than
100 ps on a standard dSpace real-time platform demonstrate the real-
time feasibility of the control scheme.

The paper is outlined as follows. Section 2 states the physical
PMSM model and the system constraints. Section 3 presents the MPC
formulation and the nonlinear optimization algorithm for solving the
MPC problem. The experimental framework including the PMSM test
bench, parameter identification, and load estimation is presented in
Section 4. Finally, experimental results in Section 5 illustrate the MPC’s
performance in comparison to a standard field-oriented controller. The
paper concludes with a short summary and an outlook to further work.

2. Problem statement

This section derives the electrical and mechanical subsystems of the
PMSM model and illustrates the parameter dependencies. In addition,
the constraints that the MPC has to account for are presented.

2.1. Model design

This paper considers a PMSM that is driven by a two-level voltage
source inverter (VSI), as shown in Fig. 1. The VSI is assumed to be
ideal in the sense, that it compensates for parasitic effects by itself.
The electrical behavior of a PMSM is typically described by the dg-
model assuming constant electrical parameters such as inductivities
and permanent flux linkage, see e.g. Schroder (2009). However, in
general, these parameters are not constant. Therefore, the basic voltage
equations

ug = Rig + Swqliq. iq) — oyg(ig, ig) (1a)
uq = Rig + Sy (ig. iq) + 0wglig. iq) (1b)
with the electrical rotor speed w, the dq-currents iy and ig, the dg-
voltages uy and ug, the stator resistance R, and the flux linkages

walig. iq) = wpliq) + La(ig.iq)ig (2a)
Wqlia iq) = Lqlig. ig)iq (2b)

are considered.
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Fig. 1. Schematic representation of the PMSM drive system.

The dq-inductivities Lq and L, as well as the permanent flux linkage
v, in general depend on the dg-currents and in general also on the angle
of the rotor, cf. e.g. Ebersberger and Piepenbreier (2012). However, the
angular dependency is not considered in this paper, in order to keep both
the modeling effort and the computational complexity within reasonable
limits. Also note that resistance R depends on the temperature. This
effect is neglected as well, as the thermal dynamics of the PMSM is slow
compared to its current dynamics.

Evaluating the derivatives in the voltage equations (1) and (2) leads
to the differential equations

6u/d(id,iq) diq

o ovaliaiq) dig .
ug = Rig + === 71 @ % (ig-iq) (3a)
~— ~——
Ldq Laq
_ pi o Ovqliadq) dig | vqliaiq) dig
ug = Rig + Fra— oy 5 Tovd (Id, ) (3b)
N—— N——
Lqa Lqq

for the dq-currents iq and iq. The partial derivatives of the flux linkages
with respect to the dq-currents form the differential inductivities Ly,
ﬁqq, qu, and Lyq, respectively. Explicitly solving the system (3) for

ig

dr
matrix, which renders the resulting ordinary differential equations

(ODEs) too complex for a nonlinear MPC approach running in real-time.

Two reasonable assumptions can be made to simplify (3). The
differential cross coupling inductivities Lqq and Lgg are typically about
one order of magnitude smaller than Lyqq and L,q (Ebersberger &
Piepenbreier, 2012; Kellner & Piepenbreier, 2011). Furthermore, Lg44
and Ly correspond closely to the absolute inductivities Lq or L,. Small
differences between these quantities only occur for higher currents, see
e.g. Kellner and Piepenbreier (2011). These observations and consider-
ing (2) and (3) lead to the approximations

and —t would require the inversion of the differential inductivity

oy (igiq) _ L4 (ig-iq ). N
de T Ld (ld,lq) T g~ Ld (43)
0u/ idsiq (Id-' ) .
Lyg = —q = L (ig-iq) + —m_ Ligw~ Ly (4b)
a.,,d( iq) _ wp(ig) , 9Lal(igiq) .
Laq = dlj o :qu + E ~0 (40)
_ g (ideiq) _ 9Lq (ig-q) . ~
bad = =0 = T a® 0 0
which eventually yield the dq-current dynamics
Lylig,ig)iq = —Rig + oLy(ig,iq)iq + g (5a)
Ly(ig.iq)5iq = —Riq — 0Lalig, ig)iq — oypliq) + ug - (5b)
In addition, the driving torque of the PMSM can be expressed as
Tiligriq) = 32 (Wpliqliq + iaiq(Lq(ig: iq) = Lqlia»iq)) (6)

with the number of pole pairs z,. Note that (5) and (6) almost corre-
spond to the classical dg-model (Schroder, 2009) with the exception that
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