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A B S T R A C T

Wave Energy Converters (WECs) have to be controlled to ensure maximum energy extraction from waves while
considering, at the same time, physical constraints on the motion of the real device and actuator characteristics.
Since the control objective for WECs deviates significantly from the traditional reference ‘‘tracking’’ problem in
classical control, the specification of an optimal control law, that optimises energy absorption under different
sea-states, is non-trivial. Different approaches based on optimal control methodologies have been proposed for
this energy-maximising objective, with considerable diversity on the optimisation formulation. Recently, a novel
mathematical tool to compute the steady-state response of a system has been proposed: the moment-based phasor
transform. This mathematical framework is inspired by the theory of model reduction by moment-matching and
considers both continuous and discontinuous inputs, depicting an efficient and closed-form method to compute
such a steady-state behaviour. This study approaches the design of an energy-maximising optimal controller for
a single WEC device by employing the moment-based phasor transform, describing a pioneering application of
this novel moment-matching mathematical scheme to an optimal control problem. Under this framework, the
energy-maximising optimal control formulation is shown to be a strictly concave quadratic program, allowing
the application of well-known efficient real-time algorithms.

1. Introduction

Energy capture from ocean waves has the potential to help fulfil
the increasing worldwide energy demand, with an estimation of about
32.000 TWh/year (Mork, Barstow, Kabuth, & Pontes, 2010). Despite
such a potential, wave energy is still at an early stage of develop-
ment, since the technical and conceptual convergence to a technology
best suited for this application has not yet been achieved (Edenhofer
et al., 2011). Consequently, hundreds of patents, proposing different
methodologies, have been filled all over the world (Pelc & Fujita, 2002).
A noteworthy overview and classification of Wave Energy Converters
(WECs) can be found in Falcão (2010).

In a more precise definition, a WEC is a device to harvest ocean
wave energy by converting the mechanical energy of the waves to
electrical energy by means of a Power Take-Off (PTO) system. In
order to be profitable, an optimised process that ensures extracting the
maximum time averaged power, for a given WEC device, from ocean
waves is crucial. Moreover, in order to maximise power absorption and
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minimise the risk of damage, such an optimisation strategy must take
into account the physical limitations of the whole conversion chain.
Such an optimisation procedure can be achieved by designing an optimal
controller that accomplishes such objectives.

A considerable number of optimal control formulations and methods
have been studied and developed to maximise the energy extraction
process from WECs, with extensive reviews available, for example in
Ringwood, Bacelli, and Fusco (2014). One particular popular wave
energy control strategy is Model Predictive Control (MPC). The success
of MPC on the energy-maximising control is mainly due to its ability to
handle physical constraints systematically and within a finite horizon
optimisation process. While MPC applied to WECs also involves a
mathematical model, a typical receding horizon strategy, and can deal
with system constraints, the objective function contrasts significantly
with the one related to the usual set-point tracking objective. Rather, a
converted energy-maximising objective, consistent with the definition
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of the WEC control problem (see Section 3.3) is employed. In par-
ticular, this variation can cause numerical search problems, due to a
potential loss of convexity of the performance function involved for
this application (Faedo, Olaya, & Ringwood, 2017), compared to the
normal quadratic form associated with tracking problems. In addition,
the computational burden required for such a strategy can render the
controller unsuitable for real-time applications (Faedo et al., 2017).
Motivated by the appealing characteristics of MPC, several studies utilise
‘‘MPC-like’’ strategies, based on spectral and pseudospectral methods
(Fahroo & Ross, 2008; Garg, Hager, & Rao, 2011), to try to overcome the
(possibly) demanding computational effort of the original MPC optimal
control formulation. A recent overview of both MPC and spectral and
pseudospectral MPC-like strategies in wave energy applications can
be found in Faedo et al. (2017). Notwithstanding, computing this
energy-maximising control law in real-time is currently a strong concern
among the wave energy community, and most of the proposed real-time
strategies are usually inherently suboptimal.

Since the sea state (which directly affect the dynamic behaviour of
WECs) varies slowly over time, the steady-state analysis of WECs is
of paramount importance to design efficient real-time controllers for
energy maximisation, as already exploited in studies such as Bacelli and
Ringwood (2015) or Bacelli, Ringwood, and Gilloteaux (2011). Recently
the moment-based phasor transform has been proposed to compute the
steady-state response of a dynamical system under continuous or dis-
continuous inputs, see Scarciotti and Astolfi (2016b). From now on we
refer to the framework induced by the moment-based phasor transform
as the moment-domain characterisation (or formulation) of a system.
This mathematical tool is based upon the theory developed in several
studies concerning model order reduction (and particularly, moment-
matching methods), such as Astolfi (2010) and Scarciotti and Astolfi
(2015, 2016a).

In particular, in Scarciotti and Astolfi (2016b) it has been shown
that the phasors of an electrical circuit are the moments computed at a
single point on the imaginary axis of the transfer function of the linear
system describing the circuit. Exploiting this relation, Scarciotti and
Astolfi (2016b) has developed a mathematical framework to perform
the steady-state analysis of systems driven by both continuous and
discontinuous sources. The use of this framework is demonstrated in
Scarciotti and Astolfi (2016b), both analytically and numerically, by
analysing the steady-state behaviour of power inverters and wireless
power transfer systems.

Nevertheless, and to the best of the authors knowledge, this moment-
based framework has not yet been exploited to solve an optimal control
problem. In this paper, we recognise the potential of such a mathe-
matical tool to present a first application of the moment-based phasor
transform for optimal control design, subject to path constraints. In
particular, an energy-maximising optimal controller for a wave energy
converter is designed, based on such a novel framework. Moreover,
since the theoretical formulation is presented for a general class of
devices, this paper not only demonstrates a single application case, but
introduces the mathematical foundations for a novel approach to model-
based optimal control design for WECs, in general.

The remainder of this study is organised as follows: first, basics of
the moment representation of a system and its connection with the
steady-state behaviour of a dynamical system are recalled in Section 2,
while the WEC optimal control problem is described in Section 3. A
novel moment-based approach for the solution of the optimal control
problem for WECs is developed analytically in Section 4, constituting
the main original contribution of the paper. Numerical examples of
the application of the moment-based WEC control formulation, under
different sea conditions, are given in Section 5, proving the efficacy
of the approach, while conclusions on the overall application of the
proposed method are provided in Section 6.

1.1. Notation and preliminaries

Standard notation is considered through this study, with some
exceptions further detailed in this preliminary section. R+ (R−) denotes
the set of non-negative (non-positive) real numbers. C0 denotes the
set of pure-imaginary complex numbers and C− denotes the set of
complex numbers with negative real part. The symbol 0 stands for
any zero element, according to the context. The symbol I𝑛 denotes an
order 𝑛 identity matrix, while the notation 1𝑛×𝑚 is used to denote a
𝑛 × 𝑚 Hadamard identity matrix (i.e. a 𝑛 × 𝑚 matrix with all its entries
equal to 1). The spectrum of a matrix 𝐴 ∈ R𝑛×𝑛, i.e. the set of its
eigenvalues, is denoted as 𝜎(𝐴). The symbol ⨁ denotes the direct sum
of 𝑛 matrices, i.e. ⨁𝑛

𝑖=1𝐴𝑖 = diag(𝐴1, 𝐴2,… , 𝐴𝑛). The notation ℜ{𝑧}
and ℑ{𝑧}, with 𝑧 ∈ C, stands for the real-part and the imaginary-part
operators respectively, whilst ℋ {𝑍} = 𝑍+𝑍⊺

2 stands for the symmetric-
part of 𝑍, where 𝑍 ∈ R𝑛×𝑛. If 𝐹 ∈ R𝑛×𝑛 is a symmetric matrix, the
expression 𝐹 ≻ 0 implies that 𝐹 is positive-definite. The Kronecker
product between two matrices 𝑀1 ∈ R𝑛×𝑚 and 𝑀2 ∈ R𝑝×𝑞 is denoted
as 𝑀1⊗𝑀2 ∈ R𝑛𝑝×𝑚𝑞 . The convolution between two functions 𝑓 (𝑡) and
𝑔(𝑡) over a finite range [0, 𝑡], i.e. ∫ 𝑡0 𝑓 (𝜏)𝑔(𝑡 − 𝜏)𝑑𝜏 is denoted as 𝑓 ∗ 𝑔.
The inner product between two functions 𝑤(𝑡), 𝑙(𝑡) ∈ 𝐿2(R)[𝑎, 𝑏], where
𝐿2(R)[𝑎, 𝑏] is the set of all real-valued functions square integrable in the
interval [𝑎, 𝑏], is given by

⟨𝑤(𝑡), 𝑙(𝑡)⟩ = ∫

𝑏

𝑎
𝑤(𝜏)𝑙(𝜏) 𝑑𝜏. (1)

If 𝛺 ∶ 𝒳 ⟶ 𝒵 is a linear transformation, where 𝒳 and 𝒵 are K-vector
spaces (K a field), the image and the kernel of𝛺 are denoted Im{𝛺} ⊂ 𝒵
and Ker{𝛺} ⊂ 𝒳 , respectively. Finally, the symbol 𝜀𝑛 ∈ R𝑛×1 denotes a
vector with odd components equal to 1 and even components equal to
0.

In the remainder of this section the formal definitions of two
important operators are presented, since their definition in the literature
can be often ambiguous.

Definition 1 (Brewer, 1978 Kronecker Sum). The Kronecker sum between
two matrices 𝑃1 and 𝑃2, with 𝑃1 ∈ R𝑛×𝑛 and 𝑃2 ∈ R𝑘×𝑘, is defined (and
denoted) as

𝑃1⊕̂𝑃2 ≜ 𝑃1 ⊗ I𝑘 + I𝑛 ⊗ 𝑃2. (2)

Definition 2 (Brewer, 1978 Vec Operator). Given a matrix 𝐻 =
[ℎ1, ℎ2,… , ℎ𝑛] ∈ R𝑛×𝑚, where ℎ𝑗 ∈ R𝑛, 𝑗 = 1,… , 𝑚, the vector valued
operator vec is defined as

vec{𝐻} ≜

⎡

⎢

⎢

⎢

⎢

⎣

ℎ1
ℎ2
⋮
ℎ𝑚

⎤

⎥

⎥

⎥

⎥

⎦

∈ R𝑛𝑚. (3)

Finally, useful theorems and properties of the Kronecker sum, and the
vec and Hermitian-part operators, are recalled in the following.

Theorem 1 (Brewer, 1978). Consider matrices 𝑃1 and 𝑃2 as in Definition 1.
Assume that 𝑃1 and 𝑃2 have eigenvalues 𝜆𝑖, for 𝑖 = 1,… , 𝑛, and 𝜇𝑗 , for
𝑗 = 1,… , 𝑘. Then the Kronecker sum 𝑃1⊕̂𝑃2 has the 𝑛𝑘 eigenvalues

𝜆1 + 𝜇1,… , 𝜆1 + 𝜇𝑘, 𝜆2 + 𝜇1,… , 𝜆2 + 𝜇𝑘,… , 𝜆𝑛 + 𝜇𝑘. (4)

Corollary 1 (Brewer, 1978). The Kronecker sum 𝑃1⊕̂𝑃2 is invertible if and
only if 𝜎(𝑃1) ∩ 𝜎(−𝑃2) = ∅.

Property 1 (Brewer, 1978). Let 𝐴 ∈ R𝑛×𝑚 and 𝐵 ∈ R𝑝×𝑞 . The following
relation for the vec operator holds:

vec{𝐴𝐵} = (I𝑞 ⊗𝐴)vec{𝐵} = (𝐵⊺ ⊗ I𝑛)vec{𝐴}. (5)
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