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a  b  s  t  r  a  c  t

In  this  paper  we will show  the boosting  performance  of  nonlinear  machine  learning  techniques  applied
to  a novel  soil  moisture  sensing  approach.  A probe  consisting  in  a transmitting  and  a  receiving  dipole
antenna  was  set  up  to  indirect  assess  the  moisture  content  (%)  of  three  different  types  of  soils  (silty  clay
loam,  river  sand  and  lightweight  expanded  clay  aggregate,  LECA).  Gain  and  phase  signals  acquired  in the
1.0 GHz  – 2.7  GHz  frequency  range  were  used  to built  predictive  models  based  on  linear  PLS regression
and  on  nonlinear  Kernel-based  orthogonal  projections  to  latent  structures  (K-OPLS)  algorithms.  K-OPLS
algorithm  slightly  increased  the  accuracy  of the  models  built  on  the gain  response  on specific  kind  of
soils  with  respect  to classical  linear  PLS.  However,  the  predictability  increases  significantly  in the  case
where  the  models  are  built  starting  from  a  matrix  containing  all  the considered  soil  samples  (silty clay
loam +  river  sand  + LECA)  achieving  R2 = 0.971  (RMSE  = 1.4%)  when  using  K-OPLS  non-linear  model  with
respect  to  R2 = 0.513  (RMSE  =  6.1%)  obtained  using  linear  PLS.  Therefore,  K-OPLS  algorithm  appears  to
give  a significant  improvement  to  modelling  data  where  nonlinear  behaviours  occur.

©  2018  Elsevier  B.V.  All  rights  reserved.

1. Introduction

The spectroscopic and time-domain analyses of the interaction
between the electromagnetic wave and the agricultural soil are, at
date, widely explored methods for the indirect assessment of its
water content [1,2]. The acquired waveforms appeared to contain
information related to different soil physico-chemical properties
and the quantitative estimation accuracy is affected by two  main
factors as the used techniques and the statistical tools [3]. Exam-
ples of these techniques are Visible, Near and Infrared sensors [4,5],
Theta probes, measuring apparent impedance at 100 MHz  [6] and
the Time Domain Reflectometry (TDR) [7], based on the analysis of
the propagation time of the electromagnetic wave through a coax-
ial cable to a probe immersed in the medium (20 kHz - 1.5 GHz), a
function of the soil dielectric permittivity.

Powerful multivariate data analysis tools able to relate two data
matrices X (spectra acquired from several samples) and Y (the ana-
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lytical properties) have played a big role in the development of the
techniques [8].

Originated around 1975, the widespread linear multivariate
Partial Least Squares (PLS) regression is considered a standard pro-
cedure in chemometrics and it has been shown to be potential for
extracting useful information starting from highly linearly corre-
lated data coming from bioengineering indirect measurements. The
tool uses a two-block quantitative PLS model based on a latent
variable decomposition of X and Y variables keeping most of the
variance of the explanatory variables. It is well known that PLS
regression has proven to be extremely useful in situation where the
number of observed variables is much higher than the numbers of
acquired samples, typical situation with spectral data [9].

However, non linear behaviours are very frequent in biosys-
tems, such as the light absorbance in milk, dependent on fat content
[10], or the dielectric permittivity in microwave region, dependent
on the soil moisture [11], just to cite a couple of examples. Sam-
ples variability and level of complexity of the matrices together
with temperature fluctuations and interactions between sensor
and product can negatively affect the robustness of PLS models and
cause non linear behaviours as shown in different works conducted
on quantitative assessment of fruits chemical properties through
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Near-infrared spectral measurements [12–14]. Agricultural soil is
a complex heterogeneous matrix characterised by organic (humus
and different particulate residues) inorganic mineral fractions (pro-
portions of sand, silt and clay particles), moisture and air [15].
Conversely, multivariate regression models based on non linear
machine learning tools have shown significant improvements in
the accuracy of the prediction of different physical and chemical
properties of this complex matrix [5,8,16].

In order to improve robustness of PLS models in presence of non
linearity, a considerable number of methods integrating non lin-
ear features within the linear PLS algorithm have been proposed.
Quadratic PLS [17], smooth bivariate spline function [18], Neural
Network PLS [19], Radial Basis Function (RBF) neural networks
[20], and Kernel PLS (KPLS) [21] are some examples of the pro-
posed machine learning implementation in PLS modelling. In KPLS
the original X variables are transformed into a high-dimensional
feature space by a non linear mapping. In this feature space, a
linear relationship can be appreciated and the PLS algorithm can
then be performed; the feature space is defined after selecting
a kernel function providing a similarity measure between pairs
of spectra [22]. The accuracy of the KPLS algorithms was tested
by analysing images generated by an airborne scanner with nine
wavelength bands (from 500 to 10,487 nm)  [23], with UV–vis and
Fourier Transform Infrared spectra for the prediction of different
mixtures contents [24], with NIR spectra for the prediction of apple
sugar content [25], and for a rapid screening of water samples con-
taining malathion [26].

Our approach is substantially different with respect to the
above-mentioned electro-magnetic techniques. Differently from
TDR, it is based on spectra analysis in the frequency domain instead
of the time-domain. Then, in contrast with commonly used IR spec-
tra techniques, we perform a spectral analysis of transfer functions
involving microwaves. This ensures a better interaction with soil
in terms of depth of penetration and also utilizes higher informa-
tion content given by the phase. Finally, we use non-linear machine
learning tools to boost the statistical inference of data.

A new probe in the dielectric sensors panorama characterised
by a transmitting and a receiving dipole antenna was set up for
the indirect assessment of the moisture content of different types
of soils: silty clay loam soil, river sand and lightweight expanded
clay aggregate (LECA). This innovative probe requires the previ-
ously drilling of the soil and then the insertion of the probe. With
respect to traditional TDR probes it could less suffer for incomplete
adherence of the soil to the sensor. In fact, the sensing is performed
in a large portion of the volume surrounding the probe and any
interference, such as air, can be removed by the powerful statisti-
cal analysis. Therefore, the information contained in both gain and
phase signals acquired in the 1.0 GHz – 2.7 GHz frequency range,
will be processed by using the Kernel-based orthogonal projec-
tions to latent structures (K-OPLS, an implementation of KPLS with
a solution able to separate structured noise). Predictive models of
the moisture content will be built starting from data sets charac-
terised by the same soil type or starting from data sets containing
all the analysed soil types.

2. Materials and methods

2.1. Probe and acquisition chain

The probe, designed to be inserted in the soil, assembles a trans-
mitting (TX) and a receiving (RX) dipole antenna, spaced 50 mm,
located in a 170 mm  long PVC sealed pipe, with outer and inner
diameter of 16 and 13 mm,  respectively. Both TX and RX anten-
nas consists of a ¼ of ring per pole. The dipole was  mounted on a
nylon ring and placed in the pipe rotated by 90◦ one with respect
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Fig. 1. Layout of the probe containing the ¼ ring dipole antenna (a); a longer probe,
containing an array of antennas (b).

to the other, in order to avoid direct coupling of the EM signal from
transmitting to receiving antenna. A layout of the probe containing
the dipoles is shown in Fig. 1a together with the particulars of the
dipole antenna (b) and the probe inserted in the soil (c). The above
described prototype was designed for moisture determination in
the soil layer pertaining the secondary tillage. A longer probe, con-
taining an array of antennas, suitably spaced, could be constructed
for in depth stratified moisture assessment (Fig. 1d). The TX antenna
was connected to a sweeper oscillator (HP8350B combined with
the HP83592B plug in), by means of a power divider. The signal
from the other output of the divider and that coming from the RX
antenna were connected to a gain and phase comparator (Ana-
log Devices AD8302) through a 20 dB attenuator. The outputs of
the comparator give a measurement of both gain over a ± 30 dB
range, scaled to 30 mV/dB, and of phase between signals over a
0◦–180◦ range, scaled to 10 mV/degree. The output of the compara-
tor was connected to a sampling board (National instrument, DAQ
USB-4431) with 24 bit of resolution and sampling frequency from
1 kS/s to 102 kS/s. The board was  connected to the PC. LabVIEW
software was  used to display the spectrum and decimate the sam-
pling frequency for reducing the number of data. A layout of the
instrumental chain was depicted in Fig. 2. The sinusoidal oscilla-
tion (13 dB m)  was  linearly swept from a frequency of 1.0 GHz to
2.7 GHz in 60 s.

2.2. Soil samples

Waveform acquisition was  conducted on three different soil
samples: silty clay loam soil (collected from Romagna region agri-
cultural soil, Italy), river sand (Bacchi S.P.A., Italy), and lightweight
expanded clay aggregate (LECA) (Laterlite, Italy). According to
USDA textural classification [27], the chosen materials are char-
acterised by very distinct physical properties (textural classes).
Silty clay loam soil is made of particles with the following size
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