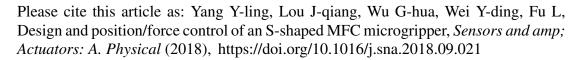
Accepted Manuscript

Title: Design and position/force control of an S-shaped MFC microgripper

Authors: Yi-ling Yang, Jun-qiang Lou, Gao-hua Wu, Yan-ding

Wei, Lei Fu


PII: S0924-4247(18)30579-X

DOI: https://doi.org/10.1016/j.sna.2018.09.021

Reference: SNA 10996

To appear in: Sensors and Actuators A

Received date: 3-4-2018 Revised date: 21-8-2018 Accepted date: 8-9-2018

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Design and position/force control of an S-shaped MFC microgripper

Yi-ling Yang^a, Jun-qiang Lou^{a, *}, Gao-hua Wu^a, Yan-ding Wei^{b,c, *} and Lei Fu^{b,c}

^aFaculty of Mechanical Engineering and Mechanics, Ningbo University, Ningbo 315211, People's Republic of China

^bKey Laboratory of Advanced Manufacturing Technology of Zhejiang Province, College of Mechanical Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China

^cState Key Laboratory of Fluid Power and Mechatronic Systems, College of Mechanical Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China

* Corresponding author.

E-mail address: loujunqiang@nbu.edu.cn and weiyd@zju.edu.cn.

Highlights

- A new macro-fiber-composite microgripper with a large displacement-volume ratio is proposed.
- Nonlinear dynamic model based on Hamilton's principle and Bouc-Wen hysteresis equation is established.
- A smooth position and force switching control scheme is designed.
- Several experiments and validations are carried out and the experimental results validate performance of the microgripper and effectiveness of the developed control scheme.

ABSTRACT

Micromanipulation tasks require microgrippers equipped with large displacement/size performance and position/force control capabilities. This paper reports the structural design, implementation and position/force switching control of an S-shaped microgripper which is driven by the micro-fiber-composite (MFC) actuator. Unlike conventional piezoelectric microgrippers, the MFC one can provide excellent characteristics of a larger displacement-volume ratio (i.e. the ratio of the maximal output displacement to the total volume of the microgripper) and simple structure. Combining the Hamilton's principle and the Bouc-Wen model, the dynamic model considering both the structural flexibility and the hysteresis nonlinearity of the microgripper is derived.

Download English Version:

https://daneshyari.com/en/article/10152261

Download Persian Version:

https://daneshyari.com/article/10152261

<u>Daneshyari.com</u>