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A B S T R A C T

Evidence ranging from behavioural adaptations to neurocognitive theories has made significant advances into
our understanding of feedback-based learning. For instance, over the past twenty years research using elec-
troencephalography has demonstrated that the amplitude of a component of the human event-related brain
potential – the reward positivity – appears to change with learning in a manner predicted by reinforcement
learning theory (Holroyd and Coles, 2002; Sutton and Barto, 1998). However, while the reward positivity (also
known as the feedback related negativity) is well studied, whether the component reflects an underlying learning
process or whether it is simply sensitive to feedback evaluation is still unclear. Here, we sought to provide
support that the reward positivity is reflective of an underlying learning process and further we hoped to de-
monstrate this in a real-world medical education context. In the present study, students with no medical training
viewed a series of patient cards that contained ten physiological readings relevant for diagnosing liver and
biliary disease types, selected the most appropriate diagnostic classification, and received feedback as to whether
their decisions were correct or incorrect. Our behavioural results revealed that our participants were able to
learn to diagnose liver and biliary disease types. Importantly, we found that the amplitude of the reward po-
sitivity diminished in a concomitant manner with the aforementioned behavioural improvements. In sum, our
data support theoretical predictions (e.g., Holroyd and Coles, 2002), suggest that the reward positivity is an
index of a neural learning system, and further validate that this same system is involved in learning across a wide
range of contexts.

1. Introduction

Converging evidence has made significant advances into under-
standing how humans learn from feedback. Whereas pioneer research
has described how behaviours change in response to rewards and
punishments (Skinner, 1958), more recent studies have theorized the
neural mechanisms that underlie reward learning systems within the
brain (Holroyd and McClure, 2015). In particular, neuroimaging studies
have discovered that there are at least two neurocognitive mechanisms
to learning from feedback. First, it has become evident that there is an
early, unconscious system that is sensitive to violations of expectancy
(Holroyd and Coles, 2002; Holroyd and Krigolson, 2007; Krigolson
et al., 2014; Sutton and Barto, 1998). Second, there also appears to be a
later conscious system responsible for updating mental representations

of the environment in order to adapt behaviours and predictions (Sato
et al., 2005; Yeung and Sanfey, 2004). The former of these processes
has been theorized to be driven by the midbrain dopamine system
which delivers signals that reflect reward prediction errors – the degree
to which the predictions of outcomes do not match the actual outcomes
– to the anterior cingulate cortex (ACC; Holroyd and McClure, 2015;
Schultz et al., 1997). More precisely, within this specific framework
(i.e., Holroyd and Coles, 2002), prediction errors are computed within
the basal ganglia, and projected to the ACC via the midbrain dopamine
system. Computational theories describe the ACC to be a ‘controller’ of
cognitive resources in that it integrates these dopamine signals and
directs how to best use resources across the brain in order to learn from
the environment (Holroyd and McClure, 2015).

Over the past twenty years there has been a large body of work
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examining the electroencephalographic (EEG) responses of these re-
ward signals. In 1997, Miltner, Braun, and Coles first reported the
feedback related negativity (FRN), a component of the human event-
related brain potential (ERP) evoked by the processing of outcome
feedback that is now theorized by some to reflect the arrival of dopa-
mine signals at the ACC (Holroyd and Coles, 2002; Holroyd and
McClure, 2015; Holroyd and Yeung, 2012; Schultz et al., 1997). More
recently, it has been suggested that the FRN should be framed as reward
positivity reflecting the sensitivity of this component to positive as
opposed to negative outcomes (Foti et al., 2011; Holroyd et al., 2008;
Proudfit, 2015). The reward positivity component arises in frontal-
central regions of the scalp 250 to 350 ms following performance
feedback (Proudfit, 2015). Specifically, it is theorized to be the ERP
analog of reward prediction error dopamine signals arriving at the ACC
(Holroyd and Coles, 2002; Holroyd and McClure, 2015; Holroyd and
Yeung, 2012).

If the Holroyd and Coles hypothesis is true, it seems logical that the
amplitude of the reward positivity should reflect underlying learning
processes – yet, to date, findings are mixed. For instance, Krigolson
et al. (2014) demonstrated that the amplitude of the reward positivity
diminished with learning, a result also reported by the same group in
2009 (Krigolson, Pierce, Tanaka, & Holroyd) and by others (Bellebaum
and Colosio, 2014; Bellebaum and Daum, 2008; Eppinger et al., 2008;
Luque et al., 2012; Sailer et al., 2010). Other studies, however, have
found that behavioural and neural changes linked to learning did not
always coincide (Bellebaum et al., 2010; Eppinger et al., 2009; Groen
et al., 2007; Hämmerer et al., 2010; Holroyd and Coles, 2002;
Nieuwenhuis et al., 2002; see Walsh and Anderson, 2012 for a review).
As such, it is unclear if the reward positivity reflects an underlying
learning process or whether it is simply sensitive to feedback evalua-
tion.

One potential explanation for the conflicting findings may relate to
whether the information in experimental paradigms is relevant and/or
learnable. For example, in some of the gambling paradigms typically
used to study the reward positivity no learning can actually occur. This
was explored by Bellebaum and Colosio (2014) who had participants
make decisions about alphabetic characters in which feedback for some
stimuli was contingent on participant responses (learning could occur),
while for other stimuli it was not (learning could not occur). They found
that the reward positivity amplitude decreased across the task only for
the contingent stimuli. As such, it appears to be important that we study
the reward positivity in tasks where learning can occur. Related to that,
is the relationship between information and outcomes. Specifically, in
the aforementioned studies participants had to learn about shapes
(Bellebaum and Daum, 2008; Bellebaum et al., 2010; Krigolson et al.,
2009; Krigolson et al., 2014; Sailer et al., 2010), simple objects
(Eppinger et al., 2008; Eppinger et al., 2009; Groen et al., 2007;
Holroyd and Coles, 2002; Luque et al., 2012), and alphabetic characters
(Bellebaum and Colosio, 2014; Hämmerer et al., 2010; Nieuwenhuis
et al., 2002). However, in none of these experiments did the stimuli
naturally lead to a correct answer. In other words, the stimulus–re-
sponse mappings were in a sense both arbitrary and meaningless. Put
another way, what was learned by participants in these studies could
never be used in, nor ever arise from, any natural environments.

In contrast, behavioural research has explored learning in real-
world contexts. For example, two recent studies have demonstrated the
efficacy of reinforcement learning in medical education (Anderson
et al., 2016; Xu et al., 2016). Anderson et al. (2016) used a reinforce-
ment learning paradigm to enhance the teaching of neuroanatomy to
medical students. Specifically, they had participants learn to identify
neuroanatomical structures via a computer based trial and error
shaping process – participants saw an image with a label, determined
whether the structure and label were correctly matched, and were
provided with feedback about the accuracy of their response. Im-
portantly, participants learned to identify multiple neuroanatomical
structures as was indicated by increasing accuracy rates and decreasing

response times (Anderson et al., 2016). Further evidence supporting
this in a medical education context comes from Xu et al. (2016) who
used a similar approach to teach students to correctly categorize mel-
anoma. These paradigms are progressing in the correct direction, yet
still rely on simple stimuli (e.g., an image). We propose that to truly
understand how learning occurs organically it is important to extend
these findings to learning more complex real-world material while at
the same time investigating the neural processes involved.

Here, we seek to demonstrate that changes in the reward positivity
are related to an actual learning process and moreover that the system
underlying this component plays a role when learning complex real-
world material. In the current study, participants were to learn to di-
agnose liver and biliary diseases by making judgments on patient case-
studies and utilizing simple performance feedback while electro-
encephalographic data were recorded. We hypothesized that partici-
pants would be able to learn complex data structures in order to cate-
gorize clinical cases through the use of a reinforcement learning
paradigm. Specifically, we predicted that accuracy rates would be
higher and reaction times (i.e., viewing the patient card and viewing
the diagnostic options) would be quicker late in each phase, when
learning has occurred, as opposed to early in each phase. Further, we
predicted that participants would score higher than chance on a re-
tention test. In regards to neural data, we hypothesized that perfor-
mance feedback would elicit a reward positivity – indicating the pro-
cessing of said feedback. Importantly, we also predicted that the
amplitude of the reward positivity would diminish with learning – a
result in line with previous work and theoretical predictions (i.e.,
Sutton and Barto, 1998).

2. Methods

2.1. Participants

Thirty undergraduate students with no medical training (23 female,
mean age 20 years old [CI:± 1 year]) from the University of Victoria
participated in the experiment. All participants had normal or cor-
rected-to-normal vision, no neurological impairments, and volunteered
for extra course credit in a psychology course. Four participants were
removed as they did not progress past the first phase (see below) re-
sulting in twenty-six participants (19 female, mean age 20 years old
[CI:± 1 year]). All participants provided informed consent approved
by the Human Research Ethics Board at the University of Victoria, and
the study followed ethical standards as prescribed in the 1964
Declaration of Helsinki.

2.2. Apparatus and procedure

Participants were seated in a sound dampened room in front of a 19″
LCD computer monitor and used a handheld 5-button RESPONSEPixx
(VPixx, Vision Science Solutions, Quebec, Canada) controller to com-
plete an adaptation of the Cards reinforcement learning paradigm
(Bannister et al., 2016; Burak et al., 2015; Horrey et al., 2016; Kazoleas,
2016; Tang et al., 2016) written in MATLAB (Version 8.6, Mathworks,
Natick, U.S.A.) using the Psychophysics Toolbox extension (Brainard,
1997).

Cards teaches participants through the application of reinforcement
learning principles. In our experiment, participants were presented with
physiological data (e.g., liver enzyme values) which they then used to
make clinical decisions. Specifically, participants learned to classify five
types of liver and biliary diseases: cholestatic intrahepatic, cholestatic
extrahepatic, mild hepatocellular, moderate hepatocellular, and severe
hepatocellular. This classification mimics the first step of cognitive
organization structures called “schemes”, a process particularly as-
cribed to expertise (Coderre et al., 2003). During each clinical case (i.e.,
trial) of the experiment, participants were shown a patient case-study
card followed by a multiple-choice presentation of the diagnostic
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