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A B S T R A C T

A modified version of the Cobb-Douglas production function is proposed for simulating production costs in
resource extraction models. The resulting average cost function is U-shaped with a wide bottom, and as such
should be more representative of the economies of scale associated with bulk operations. It also possesses a
minimum which is obtainable from the characteristics of the operations. The viability of the proposed cost
function is demonstrated in a profit maximisation exercise constructed as a problem in optimal control, ren-
dering results consistent with what could be seen in a real-world resource extraction operation with similar
constraints.

1. Introduction

A resource extraction model provides the backbone for the supply-
side of a resource trade model, which is often employed in the study of
commodity markets. The mine operator must cover the costs of deli-
vering minerals to the mine gate where the product is sold to an offtake
agent at the prevailing market price. In modelling applications it is
often desirable to have a cost function explicitly dependent on product
output, such as in the coal market study of Haftendorn et al. (2010) and
other production scheduling optimisation models where output re-
presents a choice variable. Operating cost is of interest for other factors
governing resource supply, such as the cut-off grade parameter in me-
tals mining which determines the level of mineralisation required in
order for extraction to proceed, see Zhang and Kleit (2016). Operating
cost is also a determinant of the optimal price threshold for mine ac-
tivation in real option value models, such as used in Zhang et al. (2014)
as well as in Zhang et al. (2017).

The average cost derived from a total production cost curve is
thought to be U-shaped and can be represented by a quadratic function.
Though computationally convenient to work with, one is then faced
with the problem of determining the turning point of the average cost
function. Also, it is questionable whether a quadratic average cost
renders a wide enough U-shape such that it is adequate in representing
costs in bulk mining operations.

We propose a modified version of the Cobb-Douglas production cost
function, in order to better approximate the economies of scale asso-
ciated with resource extraction operations for applications requiring a
cost function explicitly dependent on production quantity. The

generalised Cobb-Douglas production function is used here due to its
relative simplicity, good behaviour and the separability of input factors.
A limiting term is introduced to account for diseconomies of scale that
emerge as production levels approach technical capacity.

2. Relevant literature

The appropriate functional form for industrial production cost
curves has been under debate since Cobb and Douglas (1928) first
proposed what has since become a widely used means for characterising
the production behaviour of the firm. They proposed relating produc-
tion Q to quantities of inputs, specifically labour L and capital K, via the
equation

=Q AL K ,α β (1)

where >A 0 indicates the state of technology, and >α β, 0 denote the
relative factor shares in the case of perfect competition. Eq. (1) is a
homogeneous function of degree +α β; returns to scale are constant
when + =α β 1, increasing when + >α β 0, and decreasing when

+ <α β 0. In addition, Eq. (1) is additively separable and homothetic
(Katzner, 1970). The constant-elasticity-of-substitution (CES) produc-
tion function (Arrow et al., 1961) generalises the Cobb-Douglas. The
merits of using the Cobb-Douglas production function for analyses of
production processes is argued by Bhanumurthy (2002).

The generalised Cobb-Douglas production function was studied by
Vîlcu (2011) in a differential geometry setting, rendering interesting
links, and in particular, that this function exhibits “constant returns to
scale if and only if the corresponding hypersurface is developable”
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Vîlcu (2011).
The historical development of the production function is discussed

in Mishra (2007), the relevance of technical and allocative efficiencies
is highlighted, and the production function is more precisely defined as
relating production inputs to the maximal technically feasible level of
output.

Capacity-constrained production cost is typically considered by
means of constraints imposed on an optimisation problem setting, as in
Florian and Klein (1971), and Lambrecht and Vander Eecken (1977),
and do not feature explicitly in the cost function itself.

The cost and production data typically available for modelling
purposes are in many cases inadequate for specifying certain cost
functional forms. As such, researchers have incorporated simpler cost
functions in their models of commodity production and trade. Constant
per-unit cost values have been used in, for instance, Leuthold et al.
(2008), Holz et al. (2008), and Aune et al. (2004). Linear cost functions
have been incorporated to account for changes in cost resulting from
varying production levels, as in Yang et al. (2002) and Haftendorn et al.
(2010). A quadratic marginal cost (MC) formulation has also been
suggested, see Poulizac et al. (2012). However, for a quadratic MC one
is faced with the problem of establishing the turning point of the ATC
function. Golombek et al. (1995) propose a form for the marginal
production cost where the cost increases exponentially as the quantity
produced approaches the firm's maximum production capacity limit.
This approach is adopted by Paulus and Trüby (2011).

3. Producer behaviour theory

Definitions and explanations of applicable microeconomic theory
can be sourced from texts such as Bernheim and Whinston (2008), or
Goolsbee et al. (2013).

A producer's operating cost of supply as a function of quantity
produced q is a total cost, TC q( ), comprising variable cost, VC q( ), and
fixed cost, FC . Variable costs are those costs that vary with the quantity
of output produced, such as fuel, labour and consumables. Fixed costs
on the other hand are expenses incurred regardless of the quantities
produced and include overhead items such as the cost of renting com-
mercial space or the cost of assets such as premises or capital equip-
ment. This distinction is important in the context of loss-making pro-
ducers and determining when these producers would begin cutting back
on output. In the short-run,1 loss-making suppliers would cut back
volumes only when the average loss on those volumes exceeds the
average variable cost, =AVC VC q/ , associated with producing those
volumes. Loss-making firms are able to increase output to spread FC
over volumes, thereby reducing AFC. In the case where the firm has a
higher FC, the firm might be inclined to maintain loss-making pro-
duction volumes for longer. In the long-run, a firm would exit the in-
dustry if the market price P is below its long-run ATC.

A producer's marginal cost of production is simply the derivative of
his total cost function, i.e.

= ∂
∂

MC TC
q

.

ATC is typically assumed to exhibit a U-shape.

4. Specifying cost function form

The chosen form for operating cost function (3) is motivated by
consideration of the Cobb-Douglas production function, which is a
particular case of the CES or constant elasticity of substitution functions.
The general CES function is given by (Ferris and Pang, 1995):
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assumed to be defined over +
I , with continuity-defined boundary va-

lues. CES functions are concave for ≤p 1 and convex for ≥p 1. Then
the Cobb-Douglas function is defined as (Ferris and Pang, 1995):
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where q is the total quantity of product produced, xi is the ith input item,
and
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We implement a modified version of the Cobb-Douglas by adding a
term

−
a

Q q
, where a is some positive constant, to account for cost in-

creases owing to congestion as production levels q approach the max-
imum physical capacity output Q in the short-run. This function ex-
hibits a U-shape with a longer, flatter bottom than the quadratic form
and should as such be more representative of the economies of scale
typical of bulk resource extraction operations.

That is, the miner is able to reduce per-unit costs by spreading
overall costs over larger volumes, facing a limit to which production
volumes can increase before inefficiencies begin to arise. The proposed
production cost function is of the form:
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so that
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These functions are plotted in Fig. 1. Technical efficiency is assumed
so that the analysis of the production function is concerned with allo-
cative efficiency solely (Mishra, 2007).

4.1. Motivation for proposed cost functional form

Cost function (3) can be derived from the Cobb–Douglas production
function by re-writing (2) as

= …q x xμ ,α
n
α

1
n1

with μ some positive constant, and ∈x Xi , where X is a vector space of
dimension +n 1. For ∑ =α 1i i , returns-to-scale are constant, for
∑ >α 1i i , returns are increasing, and for ∑ <α 1i i returns are de-
creasing. Now let =q q͠1

μ , then

… = …q q x x ,͠ ͠β β α
n
α

1n n1 1

with ∑ == β 1i
n

i1 . Linearising the above equation as

= +…+ = + …+q β q β q α x α xln ln ln ln ln ,͠ ͠ ͠n n n1 1 1

and letting =q Qln ͠ , then

= = …β Q α x Q Q· · where (1, ,1).

That is, the problem is then one of finding basis …β β{ , , }n1 in X such that
the hyperplane β Q· coincides with that of α x· . This is achieved by
choosing

=β α x
q

ln
ln

,
͠i

i i

so that

1 The short-run is the nearer term during which a firm is unable to make adjustments to
its capital of production, whereas in the long-term the firm has sufficient time to invest
and adjust its means of production.
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