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A B S T R A C T

The possible scarcity of copper (and the likely resulting pressure on prices) is an issue of concern, especially in
the light of its importance for the ever growing networking industry. Also for that reason, copper is the non-
ferrous metal most traded in the markets. Therefore, assessing the nature of its price fluctuations is an important
task. Several papers have been devoted to analysing the characteristics of the time series of copper prices,
especially for the purpose of predicting its future behaviour. The field of approaches can be divided roughly
equally between those adopting a stochastic model and those opting for a deterministic nonlinear (chaotic)
model. Nevertheless, while papers employing the stochastic paradigm have completely ignored the presence of
chaotic features, at the same time papers recognizing the chaotic paradigm have neglected the presence of
noise.The purpose of this paper is to investigate copper price behaviour in the CMX, considering a very long time
series and adopting estimation methods that provide the coexistence of stochastic and chaotic features. We find
that: a) the presence of noise is very significant (amounting to more than a quarter of the average signal value),
as well as the presence of chaotic features; b) intermittency is present, which may be indicative of a bubble-
related value that emerged without any fundamental cause.

1. Introduction

The possible scarcity of copper (and the likely resulting pressure on
prices) is an issue of concern (Gordon et al., 2006; Tilton and Lagos,
2007), especially in the light of its importance for the ever growing
networking industry. Also for that reason, copper is the nonferrous
metal most traded in the markets (NYMEX states that copper is the third
most widely used metal). Assessing the nature of its price fluctuations is
therefore an important task.

Several papers have been devoted to analysing the characteristics of
the time series of copper prices (typically the gains/losses deriving from
price changes), especially for the purpose of predicting its future be-
haviour.

The field of approaches can be divided roughly equally between
those adopting a stochastic model and those opting for a deterministic
nonlinear (chaotic) model, with some exceptions. Examples of the first
approach are found in Wets and Rios (2015), Geman and Shih (2009),
Khalifa et al. (2011), Chen (2010). Two different processes, for the
short term and the long term respectively, are proposed in Wets and
Rios (2015). A constant elasticity of variance (CEV) model is instead
proposed in Geman and Shih (2009), where the method of moments is

employed to estimate the parameters. In Khalifa et al. (2011) the vo-
latility is estimated using several dataset extracted at different time
intervals. The estimation of volatility is likewise the goal of Chen
(2010).

An econometric model, employing a large number of regressors
(both financial and fundamental), has instead been proposed in Buncic
and Moretto (2015), where a linear model with time-varying coeffi-
cients is adopted. A spectral approach, employing band-pass filtering to
extract periodic components, has been adopted in Cuddington and
Jerrett (2008) to assess the existence, frequency, and amplitude of the
so called super cycles.

On the other hand, some papers have found clear signs of chaotic
behaviour (Decoster et al., 1992; Carrasco et al., 2015). In particular,
Carrasco et al. examined a very long time series, from 1976 to 2013,
using a variety of methods: recurrence plots, Fourier spectrum analysis,
Lyapunov exponent, Hurst exponent (Carrasco et al., 2015). Through
the first two methods they obtained qualitative results suggesting the
presence of chaos, but also estimated a Lyapunov exponent roughly
around −3.2 by using the Rosenstein method (Rosenstein et al., 1993).
Through the use of the R/S statistics, they also found a Hurst exponent
in the [0.62,0.64] range, exhibiting a fractal characteristic (though the
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use of the R/S statistics is not a reliable method to detect long-range
dependence, and wavelet methods, e.g., have shown to be preferable
Beran, 1994; De Giovanni and Naldi, 2004). Among the more cautious
analyses of chaotic behaviours, Panas found evidence of a self-similar
(i.e. fractal) behaviour, but no clear indication of chaos (Panas, 2001),
while Yang and Brorsen, though not rejecting the chaotic hypothesis,
found the GARCH(1,1) process with residuals following a Student's t-
distribution to come closest to fitting the data (Yang and Brorsen,
1994).

However, while papers employing the stochastic paradigm have
completely ignored the presence of chaotic features, at the same time
papers recognizing the chaotic paradigm have neglected the presence of
noise.

In this paper, we wish to refine the analysis of chaotic behaviour in
copper prices by examining a very long time series (spanning 28 years)
and incorporating the presence of noise in the estimation of chaotic
features. In particular, we apply in this context some of the techniques
that we have used in Mastroeni et al. (2018).

After describing the main features of our dataset in Section 2, we
provide the following contributions:

• we identify the deterministic nonlinear framework for the analysis
of copper prices (Section 3);

• we show that the time series exhibits chaotic behaviour though in
the presence of noise, since its Kolmogorov-Sinai entropy, corrected
for the presence of noise, has a stable non-zero value (Section 4.1);

• we observe an intermittency behaviour, where periods of laminar
phases are interleaved with periods of chaotic behaviour (Section
4.2);

• we estimate the level of noise, which amounts to more than a
quarter of the average signal value (Section 4.3).

2. The dataset

In order to assess the presence of chaotic features in copper prices,
we consider a real dataset. In this section, we describe that dataset and
compare it to the datasets employed in the past literature for the same
purpose.

The dataset employed in our analysis is the time series of daily
Generic 1st Futures Copper closing prices (HG1 ticker) as exchanged on
the COMEX market (CMX) and retrieved from the Bloomberg website.
The COMEX market is one of the four marketplaces managed by the
CME group. The dataset spans nearly 30 years, from December 7th,
1989 till February 20th, 2017. The overall time series is shown in Fig. 1.

The plot reveals the most relevant periods and events in that
market. In particular, we can observe the long period of low prices

during the decade 1990–2000, marked by the USSR collapse in 1991
(the subsequent fall of internal demand and rise of its exports of copper,
leading to a supply increase supply) and the financial crises in
Southeast Asia in 1997–98 (the nominal price fell by more than 50%
between 1995 and 1999). The period of low prices was followed by the
strongest price increase since WW2 in the years 2003–2011, with a brief
dip in 2008–09 (the start of the crisis in Western economies). Finally, a
price decline is visible from 2011 to date, as a result of both investment
in capacity (with the subsequent increase in potential supply), induced
by the preceding high prices, and the slowdown in Chinese growth. In
addition, low energy prices have helped reduce costs for mining and
refining.

For comparison we report in Table 1 the main features of the da-
tasets employed so far in the literature on copper price analysis. The
majority was employed for classical time series analysis. A major ad-
vantage of our dataset is that we extend to 30 years the period of
analysis, while the three datasets employed so far for chaos identifi-
cation just extended over 21, 9, and 11 years respectively.

Looking at Fig. 1, we observe that the first half of the time series is
mainly random (as the average is almost constant), while in the second
half clear movements can be seen. Hence, having identified the peak
value of the copper futures prices series, we have splitted the series in
correspondence of the half of that peak (approximately at 06.02.2006).
Thus we will conduct our analysis on the following three temporal
ranges: 07.12.1989–03.02.2006, 06.02.2006–20.02.2017 and the full
time range.

3. Phase space reconstruction

In order to analyse copper prices in a nonlinear framework, we need
to reconstruct the phase space in which the time series of prices is
embedded. In this section, we describe such embedding and estimate
the relevant parameters.

As in purely deterministic systems, we consider a phase space,
where a point describes the state of the system, so that the future state is
a function of the present state. If the dimension of the phase space is m,
and the state at time i is Si, we have =+ FS (S )i i1 , where the function F
maps the present state into the future state.

In our case we just observe the time series of prices …x x x{ , , , }n1 2
(with ∈ +xi  since we are dealing with prices, which are strictly po-
sitive) and derive the time series of logarithmic returns =

−
z lni

x
x

i
i 1

,
where now ∈zi . As shown in the seminal paper by Packard et al.
(1980), the phase space can be reconstructed from experimental data,
namely the time series of observations, which represents a one-di-
mension view of the system's trajectory in the m-dimensional phace
space. In order to go back to the phase space, we need a method to map
the time series of logarithmic returns onto the state. Here we adopt theFig. 1. Copper futures prices on the COMEX market.

Table 1
Datasets employed for copper prices analysis in the literature. Acronyms: LME
denotes London Metal Exchange; NYMEX denotes New York Mercantile
Exchange; USGS denotes US Geological Survey (an online digital database). The
dataset in Yang and Brorsen (1994) was taken from the Dunn & Hargitt Com-
modity Data Bank.

Market Period start Period end Sampling Reference

NYMEX Jan 1968 March
1989

Daily Decoster et al. (1992)

Various Jan 1979 Dec 1988 Bi-monthly Yang and Brorsen (1994)
LME Jan 1989 Dec 2000 Daily Panas (2001)
LME June 1996 June 2014 Monthly Buncic and Moretto (2015)
LME Jan 1980 Nov 2012 Monthly Wets and Rios (2015)
LME 1850 2005 Annual Cuddington and Jerrett

(2008)
LME Jan 1990 Dec 2007 Daily Geman and Shih (2009)
NYMEX Jan 1999 Dec 2008 1–15min Khalifa et al. (2011)
USGS 1900 2007 Annual Chen (2010)
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