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A B S T R A C T

To extract perfluoroalkane sulfonamides (PFASAs) in water and urine samples effectively, a new adsorbent based
on poly (1H,1H,2H,2H-nonafluorohexyl acrylate/vinyboronic anhydride pyridine complex-co-ethylenedi-
methacrylate) monolith (FBE) was synthesized and used as the extraction phase of multiple monolithic fiber
solid-phase microextraction (MMF-SPME). Because there are abundant fluorinated (F-) alkyl chains and boron
atoms in the adsorbent, the FBE/MMF-SPME displays satisfactory extraction performance for PFASAs by means
of fluorophilic and B-N coordination interactions. Under the most favorable conditions, the FBE/MMF-SPME was
combined with HPLC-MS/MS for the sensitive monitoring of ultra-trace PFASAs in environmental water and
human urine samples. The limits of detection and limits of quantification achieved for target analytes were in the
range of 0.13–1.45 ng/L and 0.44–4.80 ng/L, respectively. The developed FBE/MMF-SPME-HPLC-MS/MS
method was successfully applied to quantify the level of PFASAs in water and human urine samples, and ultra-
trace target PFASAs were detected in the real samples. The recoveries at different fortified concentrations ranged
from 80.3% to 119% with RSD in the range of 0.9–11%. Compared with reported methods, the proposed method
exhibits some merits such as high sensitivity, good method precision, low consumption of sample and en-
vironmental friendliness.

1. Introduction

Perfluoroalkyl and polyfluoroalkyl substances (PFSs) are a class of
anthropogenic organofluorine chemicals characterized by hydrogen
atoms on alkylated chains were replaced by fluorine atoms. Because of
the unique properties such as good chemical and thermal stability, sa-
tisfactory surface activity and superhydrophobicity, PFSs have been
widely used in many fields such as fabric protection, photolithography,
chromium plating and fire fighting foams [1,2]. Perfluoroalkane sul-
fonamides (PFASAs) are an important class of PFSs. Because it displays
wide applications, PFASAs are ubiquitous in various environmental
waters such as tap water [3–5], canal water [6], river water [7,8] and
waste water [9,10]. Studies well indicate that PFASAs can induce ad-
verse health effects to biota [11,12] and humans [13]. For example,
Slotkin's study evidenced that PFASAs could injure pheochromocytoma
cells, and thus to be considered as developmental neurotoxicant [14].
In addition, previous studies have evidenced that urine was the primary

elimination route for PFSs [15,16]. Monitoring the concentrations of
PFASAs in human urine is necessary for toxicological study. Therefore,
it is especially important to develop highly sensitive, reliable determi-
nation method for the monitoring of ultra-trace PFASAs in water and
urinary specimens.

Compared to other classes of PFSs such as perfluoroalkyl acids and
perfluoroalkyl sulfonic acids, there are only a few analytical methods
are available for the determination of PFASAs in various matrices
[17–22]. Due to the high sensitivity and selectivity, high performance
liquid chromatography tandem mass spectrometry (HPLC-MS/MS) has
become the popular analytical method of PFASAs. However, con-
sidering the low concentrations of PFASAs in real samples and the
complexity of sample matrices, suitable sample pretreatment is neces-
sary before chromatographic detection. So far, several technologies
have been utilized to extract PFASAs [18–23]. Solid-phase extraction
(SPE) is the main sample preparation method for the analysis of PFASAs
[18–21]. However, SPE requires large volume of sample and a certain
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amount of organic solvent. At the same time, the operation procedure of
SPE is inconvenient, several steps including conditioning, loading
sample, elution of interferences and analytes are involved. Liquid-phase
extraction (LPE) is another method for the enrichment of PFASAs [22].
However, large amount of organic solvent is needed. Recently，head-
space solid-phase microextraction (HP-SPME) was developed for the
extraction of PFASAs and other PFSs [23]. After the optimization of
extraction parameters, the HP-SPME was combined with gas chroma-
tography/mass spectrometry (GC/MS) to detect PFSs in tap and surface
waters. The HP-SPME is environmentally friendly. However, the sen-
sitivity should be further improved. For PFASAs, the limits of detection
(LODs) were as high as 20 ng/L. The reason may be that the extraction
capacity of SPME is limited because a low quantity of adsorbent is
utilized. Hence, developing sample pre-concentration procedure with
simple operation, high extraction capacity, cost-effectiveness and eco-
friendliness is highly urgent for the sensitive monitoring of PFASAs.

Based on the same extraction principle as solid-phase microextrac-
tion (SPME), a new extraction format named as multiple monolithic
fiber SPME (MMF-SPME) was developed in our lab [24–26]. Typically,
MMF-SPME contains four thin monolithic fibers. As a result, the MMF-
SPME possesses higher extraction capacity than conventional SPME
because more extraction phase is involved in the extraction. Further-
more, the MMF-SPME characterized by simple operation, easy pre-
paration of monolithic fibers, fast mass-transfer, various chemical
properties, low consumptions of sample and organic solvent. Based on
the unique advantages, MMF-SPME is an ideal sample preparation
method for the analysis of PFASAs. As other adsorbent-based extrac-
tion, extraction medium (adsorbent) is the key of MMF-SPME. On the
basis of the principle of “similarity dissolves similarity”, to enrich target
analytes effectively, multiply interactions should be involved in the
extraction. In this work, PFASAs including perfluoro-1-octanesulfona-
mide (PFOSA), N-methylperfluoro-1-octanesulfonamide (MFOSA), N-
ethylperfluoro-1-octanesulfonamide (EFOSA) and 2-(N-methylper-
fluoro-1-octanesulfonamido) ethanol (MFOSE) were selected as target
analytes. In these compounds, there are abundant fluorinated (F-) alkyl
chains and sulfonamide groups which can be utilized to produce mul-
tiply interaction. For this reason, 1H,1H,2H,2H-nonafluorohexyl acry-
late (NF) and vinyboronic anhydride pyridine complex (VB) were se-
lected as dual functional monomers to in-situ copolymerize with
ethylenedimethacrylate (ED) to synthesize a new monolithic adsorbent
(FBE) and used as the extraction phase of MMF-SPME (FBE/MMF-
SPME). In the FBE, there are ample F-alkyl and boron atoms. According
to the principles of fluorophilicity [27,28] and boronate affinity
[29,30], the FBE can produce fluorophilic and B-N coordination inter-
actions with PFASAs. As a result, it is reasonable to expect that the FBE/
MMF-SPME can enrich target PFASAs effectively. To the best of our
knowledge, this is the first time that combining fluorophilic and B-N
coordination interactions to realize the effective extraction of PFASAs.
After optimization of the preparation conditions of FBA and extraction
parameters of FBE/MMF-SPME, a sensitive method for the determina-
tion of ultra-trace PFASAs in environmental water and human urine
samples was developed by the combination of FBE/MMF-SPME with
HPLC-MS/MS.

2. Experimental

2.1. Chemical reagents

The functional monomers NF (≥ 98%) and VB (95%) were pur-
chased from TCI Ltd. (Shanghai, China) and Alfa Aesar Ltd.(Tianjin,
China), respectively. Cross-linker ED (97%) was supplied by Alfa Aesar
Ltd. (Tianjin, China). 1-Propanol (97%), 1,4-butanediol (98%), azobis
(isobutyronitrile) (AIBN) (97%) and trifluoroacetic acid (TFA) were
bought from Xilong Chemical Co. (Guangzhou, China). HPLC-grade
acetonitrile (ACN) and methanol were obtained from Tedia Company
(Fairfield, USA). Milli-Q grade water utilized throughout the present

study was purified by an ultrapure water system (Millipore, USA).
Fused-silica capillary with 530 µm i.d. was got from Ruifeng
Instrumental Co. (Hebei, China).

The standards of PFOSA (≥ 98%), MFOSA (≥ 98%), EFOSA (≥ 98%)
and MFOSE (≥ 98%) were purchased fromWell-labs (wellington, Kansas,
USA). The chemical properties of the target analytes are shown in
Supporting information (Table S1). Individual stock solutions of each
PFASA at a concentration of 10.0mg/L were prepared in HPLC-grade
methanol and stored in the dark at 4 °C. Mixtures of target analytes
standard solutions were prepared at a concentration of 5.0 μg/L and were
applied to optimize the extraction parameters and validate the method.

2.2. Instruments and chromatographic analysis

Analysis of PFASAs was accomplished on an HPLC-MS/MS (Agilent
1290, Foster City, CA, USA) consisting of an auto sampler and coupled
to an Agilent 6460 triple quadrupole mass spectrometer (MS/MS). The
Agilent Masshunter workstation software (Foster City, CA, USA) was
used to control the whole HPLC-MS/MS system. A Phenomenex Kinetex
C18 LC column (100mm×3.0mm, 2.6 µm particle size) with guard
from Phenomenex (Aschaffenburg, Germany) was used for separations.
The mobile phase consisted of ACN containing 0.1% formic acid (v/v)
(solvent A) and ultrapure water with 0.1% (v/v) FA (solvent B). The LC
was run under gradient elution mode and the optimized program was as
follows: 0.0–3.0 min =40% A, 3.0–4.0min =40–60% A and kept for
2.0 min, 6.0–6.1min = 60–90% A and kept for 7.0 min, 13.0–13.1 min
=90–40% A and kept for 9.0 min. At the same time, the flow rate,
column temperature and injection volume were 0.25mL/min, 40 °C,
10 μL, respectively.

To enhance the sensitivity and selectivity for the detection of the
target analytes, MS analysis was performed using multiple reaction
monitoring (MRM) with negative ESI mode. The mass parameters in-
cluding precursor ion, PI; fragmentor voltage, FV; daughter ions, DI;
collision energy, CE, for each analyte were optimized and showed in
Table S2. The parameters of the mass spectrometer were as follows:
desolvatation temperature, 300 °C; capillary voltage, 4.0 kV; deso-
lvatation gas, 11 L/min; Delta EMV, 200 V; nebulizer, 15 psi; MS1
Heater, 100℃; MS2 Heater, 100℃. The desolvatation and collision
gases were high-purity nitrogen (99.9% purity, Air Liquid).

Elemental analysis (EA), Fourier transform infrared spectroscopy (FT-
IR), scanning electron microscopy (SEM) and pore size distribution (PSD)
were utilized to characterize the synthesized FBE. The detailed informa-
tion about these equipments can be found in the Supporting information.

2.3. Preparation of FBE/MMF

The preparation of FBE/MMF is quite simple. Firstly, thin mono-
lithic fibers were in-situ synthesized in capillaries according to the
polymerization method of monolith. In this work, the mixture of NF/VB
(w/w=1/1) was selected as dual functional monomers. ED and AIBN
(2% (w/w) of the total amount of polymerization solution) were used as
cross-linker and initiator, respectively. To obtain the satisfactory ex-
traction performance and longevity of the new adsorbent, the ratio of
NF/VB to ED and the amount of porogenic solvent (1-propanol/1,4-
butanediol, w/w=3/2) in polymerization solution were investigated
in detail (Table 1). Briefly, 18mg NF, 18mg VB, 84mg ED and 4.0mg
AIBN were dissolved in 80mg the mixture of 1-propanol (48mg) and
1,4-butanediol (32mg). The oxygen in the solution was removed with
high purity nitrogen. After that, the polymerization solution was in-
fused into a fused-silica capillary (10 cm lengthy), then using two si-
licon rubbers to seal the both ends of the capillary and put it in an oven
to conduct the polymerization reaction (70℃ for 12 h). After the
polymerization, 2.0 cm length of capillary was removed to obtain
elastic thin FBE fiber (0.53 mm in diameter and 2.0 cm in length). Ac-
cording to above-mentioned process, more thin FBE fibers could be
fabricated. In the following step, four FBE fibers were tied up at the
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