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H I G H L I G H T S

• δ-MnO2 is in-situ grown on nanocarbon materials.

• δ-MnO2-CNTs-G-NF can accommodate the volumetric change during cycling process.

• δ-MnO2-CNTs-G-NF shows an excellent capacity of 1357 mAh g−1 at 0.4 A g−1.

• A high rate capactiy of 490 mAh g−1 is attained at 4.0 A g−1 over 700 cycles.
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A B S T R A C T

The electrification of transportation necessitates the growth of high-power-density lithium ion batteries.
However, traditional graphite anodes in lithium ion batteries perform poorly especially when charged or dis-
charged under high current density. In this work, we deposit nanoflake δ-MnO2 on the carbon nanotubes-
Graphene-Nickel foam compound matrix and apply it as a self-standing anode without binder or conductive
agent. This composite buffers volume change, enables more electrochemical active sites, boosts the conductivity
of electrode materials and facilitates lithium-ion diffusion. The resulting lithium ion batteries with the composite
anodes show improved cycle life and enhanced rate performance, yielding a high specific capacity of 1250 mAh
g−1 for 350 cycles at 0.4 A g−1 and 490 mAh g−1 over 700 cycles at 4.0 A g−1.

1. Introduction

Amongst all the various energy storage devices, lithium ion batteries
(LIBs) have generally been regarded as one of the most widely used
secondary energy sources for portable electronic equipment like
smartphones, tablet computers and mobile power packs. However,
large scale applications on the electrification of transportation and MW-
class battery storage units are growing rapidly. To meet the require-
ment for electric vehicles (EVs), it is essential to explore novel anode
materials with a high specific capacity as well as superior rate and
cycling performance as alternatives to the current graphite anodes in
LIBs [1–3]. Hence, in recent years, high-capacity anode materials such
as transition-metal oxides [4–9], silicon [10–14] and metal Li [15,16]

have been widely investigated as alternatives for these traditional
carbon-based anodes.

Manganese dioxide (MnO2), as one of the most potential transition-
metal oxides, has arisen increasing attention owing to its high theore-
tical capacity (∼1230 mAhg−1), low equilibrium voltage vs. Li/Li+

[17,18], low-cost and environmental benignity [19,20]. However,
several acknowledged challenges still exist and block the application of
MnO2 anodes in LIBs. These include rapid capacity fading, poor rate
performance and low columbic efficiency caused by large volume ex-
pansion during the cycling processes and low electrical conductivity
which is intrinsic.

In-depth studies have been carried out to ameliorate the above-
mentioned problems of MnO2-based anode materials, such as different
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MnO2 polymorphs (α-MnO2 [21–24], β-MnO2 [25,26], γ-MnO2

[27–29], δ-MnO2 [30,31]), morphology control to buffer volume
change (nanocrystal [25], nanorods [21], nanoflakes [30]), composite
design with carbon-based nanomaterials to enhance its conductivity
[18,22,27,32], and combination with three-dimensional (3D) con-
ductive matrixes to prepare self-standing electrode materials (steel
plate [33], nickel foam [23,28,34], graphene [24,30,31]). Zhang et al.
[32] reported an optimized microstructure δ-MnO2/carbon nanotubes
(CNTs) composite which delivered 903 mAh g−1 reversible capacity at
0.24 A g−1 and exhibited a good rate capacity of 540 mAh g−1 at a
current density of 2.4 A g−1. Yu et al. [24] prepared free-standing
graphene/α-MnO2 nanotube films as LIBs anodes, which delivered 686
mAh g−1 of reversible capacity at 0.1 A g−1 and 208 mAh g−1 at a
higher current density of 1.6 A g−1. However, considering the poor

conductivity and mediocre rate performance of MnO2, the improve-
ment on its ion diffusion, electrical conductivity is still worthy to be
anticipated.

Herein, we construct a novel 3D self-standing composite and con-
sider using δ-MnO2 to grow on conductive nanocarbon materials and
making the porous nickel foam as framework to achieve self-stand
electrodes, which avoids the use of non-conducting binder. In the de-
sign, we use porous, conductive and robust NF to load nanocarbon and
δ-MnO2, fabricate in-situ grown δ-MnO2 to enhance connection with
carbon materials and increase composite conductivity, choose porous δ-
MnO2 nanosheets to enable more catalytic sites and shorter ion diffu-
sion path. Besides, δ-MnO2 nanoflakes and the overlapped δ-MnO2-CNT
clusters provide enough room for product accumulation and volume
changing during the cycling process. Compared with previous works,

Fig. 1. Schematic illustration of preparing self-standing δ-MnO2-CNTs-G-NF hybrids. (a, b) The 3D framework of NF and graphene-nickel foam (G-NF). (c–e)
Schematic surface morphology of synthesized G-NF, CNTs-G-NF and δ-MnO2-CNTs-G-NF, respectively.

Fig. 2. SEM images of (a) surface of NF; (b) NF coated with graphene; (c, d) low and high magnification of CNTs grown G-NF substrate; and (e, f) low and high
magnification of synthesized δ-MnO2-CNTs-G-NF hybrid.
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