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H I G H L I G H T S

• A parameter adaptive method with dead zone is developed for battery system.

• The proposed approach improves the robustness and accuracy of SOC estimation.

• The proposed approach reduces the computation for parameter adaptive method.

• The proposed approach is validated under dynamic and constant current cycles.
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A B S T R A C T

It is very important to estimate the state of charge accurately and to achieve the on-line updating of the battery
parameter for the battery management system of electric vehicles. This research aims to develop a novel
parameter adaptive method with dead zone for estimation of state of charge and other parameters of lithium-
batteries. The dead zone refers to the definition of an interval based on the error of the battery model terminal
voltage and the measured terminal voltage. When the error is no longer in the interval, the battery parameters
are not estimated. Otherwise, the battery parameters are estimated. This research can be summarized as follows.
First, the proposed method is applied to estimate all battery parameters including battery capacity, battery
impedance and open circuit voltage. Second, the use of dead zone solves the problem of poor robustness of
parameter adaptive algorithm when the initial state error is large, and the problem of instability. Finally, the
experimental results indicate that the proposed method can achieve estimation accuracy with an error of 1%.
Moreover, compared with the method used the same sampling time for estimating battery state and parameters,
the dead zone method reduces the computation.

1. Introduction

Lithium-ion batteries are important energy storage devices that
have been widely used in pure electric vehicles (EV) and hybrid electric
vehicles (HEV) due to their high performance in cycle life and energy
density [1]. The core functionality of battery management system
(BMS) in the vehicle is to estimate the state of charge (SOC). A robust
and accurate estimation of the battery‘s SOC is necessary in order to
ensure the vehicle's stability and reliability.

There is a brief summary of the SOC estimation methods given in
Ref. [2], which can be divided into three categories: the conventional
method such as open circuit voltage (OCV) method and ampere-hour
counting method; The model-based estimation method such as Kalman
filter (KF) [3], particle filter (PF) [4], H-infinity filter [5,6], and non-

linear observer [7–10]; The learning algorithm such as neural network
(NN) [11], fuzzy logic (FL) [12], support vector machine (SVM) [13]
and genetic algorithm (GA) [14,15]. The OCV method and ampere-hour
counting method are very simple methods, but their shortcomings are
obvious. The OCV method is based on a one-to-one relationship be-
tween battery OCV and SOC, but it requires a long time resting in order
to reach balance and it is difficult to use this method when the electric
car is in operation. Ampere-hour counting method is a simple calcula-
tion method using low-cost sensor measurement, but its main drawback
is easily affected by initial error and electric current measurement
noise. Therefore, the ampere-hour counting method is difficult to
guarantee the sustained time accuracy [16,17], so in practice it is often
used in combination with other model-based estimation methods. There
are many model-based SOC estimation methods, e.g. a number of
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Kalman filter methods and their variations for SOC estimation [18]. A
common drawback of the model-based methods is that the model
parameters are identified or estimated by offline data. Due to the fact
that the parameters of the battery will change with the aging of the
battery and there are fitting error for the parameter identified offline, it
is imperative to calibrate battery parameters on-line to estimate SOC
accurately for practical applications. The learning algorithm based
methods can be used for SOC estimation, which require a lot of training
data and a large amount of computation efforts.

The parameter adaptive method can improve battery SOC estima-
tion accuracy through updating battery parameters. The recursive least
square (RLS) algorithm is employed to estimate the battery parameters
with the help of the forgetting factor [19]. A dual/joint Kalman filters
method to estimate the battery SOC and capacity concurrently is pro-
posed in Refs. [20–23]. In Refs. [24–26], the unscented Kalman filter
(UKF), the particle filter (PF), and the unscented particle filter (UPF)
are respectively used to estimate battery SOC, battery capacity and
battery impedance simultaneously while the OCV is still based on off-
line data. The approach of multi-scale dual Kalman filters to estimate
the battery SOC, battery capacity and battery impedance is given in Ref.
[27], where the battery state and parameters are estimated by different
sampling time. In Ref. [28], it can be found that the multi-scale dual H-
infinity filters is applied to estimate battery SOC, battery capacity and
battery impedance. A combined method is presented in Ref. [29] where
the battery state and battery impedance are estimated by using PF and
extended Kalman filter (EKF), respectively. In general, the battery
parameters include battery capacity, OCV and battery impedance.
However, all above-mentioned methods can only estimate partial
parameters of the battery. Although all parameters of the battery would
affect the estimation of battery SOC, it is difficult to guarantee the ro-
bustness and stability of the algorithm by estimating all battery para-
meters simultaneously. Especially in some segments of OCV-SOC curve,
OCV changes dramatically with the SOC, which shows different char-
acteristics from other battery parameters. It is reasonably assumed that
the battery capacity and battery impedance are the slow time-varying
parameters compared to battery SOC, so most of the methods use OCV
off-line data to ensure the stability of the algorithm. The estimation of
OCV directly by dual Kalman filters can be found in Ref. [30], but the
other parameters of battery use off-line data to ensure the stability of
algorithm. A part of parameters identification using offline data can
improve the robustness of the algorithm with respect to the initial value
of SOC.

In view of the above problems, a key contribution of this study is
that a parameter adaptive method with dead zone is proposed. Based on
the error between the actual terminal voltage and the terminal voltage
calculated by the battery model, two dead zones are designed. The al-
gorithm stops battery parameter estimation when the battery model
error is too large or too small. The use of dead zone solves both the
problem of poor robustness of parameter adaptive algorithm when the
initial state error is large, and the problem of instability. In particular,
the estimation of OCV is converted into the OCV fitting parameters
while the fast time-varying parameter OCV is converted into several
slowly time-varying parameters. In this way, it ensures that the algo-
rithm can obtain accurate OCV values when the parameters estimation
occurs in dead zone. Moreover, the effectiveness of the parameter
adaptive method with dead zone has been validated by dynamic and
constant current loading profile. In comparison with the EKF method,
the experiments verify the correctiveness of the two dead zones.

The paper is organized as follows: Section 2 provides battery
modeling. Section 3 describes the implementation of the parameter
adaptive method with dead zone. The battery tests, experiments, si-
mulation results and evaluation of the proposed method are illustrated
in Section 4. Finally, the conclusions are drawn in Section 5.

2. Battery modeling

It is well known that the accuracy of the battery model of electric
vehicle has a great impact on the estimation of SOC [31]. The
equivalent circuit model (ECM) is widely used for Li-Ion Battery, in
particular the second-order resistor–capacitor (2RC) battery equivalent
circuit model maintains good accuracy and is not very complicated
[32].

Here we consider the second-order resistor–capacitor (2RC) battery
equivalent circuit model as shown in Fig. 1. The model consists of the
open circuit voltage (OCV), the terminal voltage U , the ohmic re-
sistance R0 and two RC branches. R1 and C1 are the activation polar-
ization resistance and capacitance, respectively; R2 and C2 are the
concentration polarization resistance and capacitance, respectively; U1
and U2 describe the diffusion voltage over the RC network; Q is the
battery capacity; U is the terminal voltage; I is the load current (as-
sumed positive for charge, negative for discharge). The electrical be-
havior of the 2RC battery equivalent circuit model can be expressed as:
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Open circuit voltage (OCV) refers to the voltage source, which is
related to the battery SOC. The OCV function takes SOC as variable. So
the OCV is typically represented by a polynomial fitted equation con-
taining SOC. The relationship between SOC and OCV is fitted by least
squares method (LSM). The OCV function can be expressed by the
following equation:
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Where Ki (i=0,1,2,3,4,5,6) are slow time-varying parameters
which correlate the SOC-OCV data. The OCV varies with the change of
SOC. If we assume the OCV as an estimated parameter, the estimation
of the parameter and state of battery must be maintained at the same
sampling time. Thus we estimate the slow time-varying parameter Ki
instead of directly estimating OCV.

Fig. 1. The circuit of the second-order RC model.
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