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1. Introduction

Nonlinear optics deals with phenomena arising from light-
induced changes in the optical properties of materials. The interac-
tion of light with a nonlinear optical (NLO) material gives rise to
new optical fields with altered properties (e.g., phase, frequency,
amplitude, polarization, path, etc.) [1-4]. The high-intensity elec-
tromagnetic fields required are usually supplied by lasers, so rou-
tine observation of NLO phenomena was only possible after the
advent of the laser in 1960 [5]. Modern nonlinear optics began
with the first demonstration of second-harmonic generation
shortly thereafter [6], but several NLO effects had been proposed
or demonstrated beforehand (e.g., the Kerr or quadratic electro-
optic effect, the Pockels or linear electro-optic effect [7], Raman
scattering, two-photon absorption (TPA) [8], two-photon excita-
tion [9], etc.). Following demonstration of the first working laser
[5,10] and the first demonstration of second-harmonic generation
[6], several other nonlinear optical effects (e.g., third-harmonic
generation (THG), sum-frequency generation (SFG), difference-
frequency generation (DFG), optical rectification, etc.) and the
theoretical framework to describe the NLO phenomena were
developed and demonstrated in quick succession [11,12].

NLO-efficient materials continue to be of intense interest, the
research being given strong impetus by a plethora of applications.
Organometallic complexes are of particular interest for reasons
summarized below. The experimental studies have been comple-
mented by computational approaches because the latter can not
only post-rationalize the outcomes of experimental studies, but
can also suggest fruitful experimental targets, and in addition
can probe structural modifications accessible with difficulty exper-
imentally. This review summarizes computational studies of the
NLO properties of organometallic complexes, and includes a dis-
cussion of some materials considerations, a summary of the theo-
retical background to NLO phenomena, and a description of the
experimental and computational methods that have been
employed to investigate organometallics.

1.1. Material considerations

Nonlinear effects arise from the interaction of intense electric
fields with nonlinear optical media. Materials with significant
NLO properties have various technological applications such as
data storage, optical computing, optical communication, optical
switches, frequency generation, etc. [2,4,13,14]. Materials which
provide large as well as fast NLO responses are desirable for prac-
tical devices, and the search for novel, efficient, photon-
manipulating materials continues unabated because there is no
material thus far which is suitable for all types of NLO applications.

Inorganic materials are usually robust with excellent thermal
stability, and inorganic crystals were the initial choice for NLO
materials, Franken et al. [6] observing the first example of
second-harmonic generation when a ruby laser was directed at a
quartz crystal. Subsequently, KTP (potassium titanyl phosphate),
LiNbOs, and LiTaO5; were used for frequency conversions. Borate
crystals have a high damage threshold and a broad transparency
region, two critical material requirements for NLO device applica-
tions; LBO (lithium triborate) and BBO (B-barium borate) are the
two most popular NLO crystalline materials from the borate family.
LBO, BBO and KDP (potassium dihydrogen phosphate) crystals
have found applications in third-harmonic generation of Nd:YAG
lasers. Some chalcopyrite crystals such as AgGas,, AgGaSe,, and
ZnGeP, have been shown to be applicable for NLO uses in the infra-
red [15]. However, many NLO applications require fast responses
and, in general, inorganic NLO crystals suffer from slow response
times (usually of the order of nanoseconds) and little architectural
flexibility [16].

Organic crystals represent another interesting class of NLO
materials [4,17,18]. Bulk nonlinearities of organic crystals can be
directly related to the optical nonlinearity of the molecular con-
stituents, and the molecular structure can be used to optimize
the nonlinearity, which is mostly derived from 7-electron redistri-
bution. As a result, organic crystals generally exhibit faster
response times (of the order of femtoseconds) than inorganic crys-
tals, for which lattice distortions or the dynamics of charge carriers
lead to slower nonlinear responses [17,19,20]. In addition to fast
response times, the advantages of organic crystals over inorganics
include ease of fabrication, exceptionally large NLO responses, and
ease of processing to films [21,22].

Organic molecules with electron releasing and withdrawing
groups linked through a m-conjugated system have been found to
exhibit strong quadratic NLO responses. However, most organic
molecules crystallize in centrosymmetric space groups for which
bulk second-order NLO effects (e.g., second-harmonic generation)
vanish, although the molecular second-order response may be
non-zero, e.g., p-nitroaniline (PNA) [22]. In contrast, 2-methyl-4-
nitroaniline (MNA), for example, has a very large bulk material
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Fig. 1. Metallocenyl complex (M = metal (commonly Fe)).
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