Author's Accepted Manuscript

Influence of electric charge on the stability of graphite-like BC_2

Wataru Hayami, Takaho Tanaka

 PII:
 S0022-4596(18)30390-6

 DOI:
 https://doi.org/10.1016/j.jssc.2018.09.006

 Reference:
 YJSSC20367

To appear in: Journal of Solid State Chemistry

Received date: 20 June 2018 Revised date: 3 September 2018 Accepted date: 6 September 2018

Cite this article as: Wataru Hayami and Takaho Tanaka, Influence of electric charge on the stability of graphite-like BC₂, *Journal of Solid State Chemistry*, https://doi.org/10.1016/j.jssc.2018.09.006

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Influence of electric charge on the stability of graphite-like BC₂

Wataru Hayami^{*}, Takaho Tanaka

National Institute for Materials Science 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan

Abstract

Graphite-like BC₂ has yet to be synthesized; however, it stably exists in the Sc₂B_{1.1}C_{3.2} compound, where the boron atoms are arranged as far apart from each other as possible. Recently, a theoretical study on monolayer BC₂ reported that in the most stable structure, B atoms are positioned adjacent to each other. We anticipated that graphite-like BC₂ might take a different structure based on the electric charge. Therefore, we carried out first principles calculations to investigate whether this is true or not. The most stable structure among the six possible structures changed with the increase in the negative electric charge, which well explained both the previous results without contradiction. The most stable structure was also dependent on the pressure. The Li intercalation potential for BC₂ was calculated to investigate its applicability as an anode for lithium-ion batteries. Our results revealed that Li atoms can be intercalated into BC₂ to yield Li_{1.5}BC₂, whose gravimetric capacity is approximately 3.1 times higher than that of LiC₆. However, the most stable structure with intercalated Li atoms became unstable when all the Li atoms were extracted. This feature may hinder the repetitive charge–discharge cycle of the anode and hence needs to be carefully considered.

Li intercalation potentials for graphite-like BC_2 . Li atoms can be intercalated into BC_2 to yield $Li_{1.5}BC_2$.

^{*} Corresponding author. *E-mail address*: hayami.wataru@nims.go.jp

Download English Version:

https://daneshyari.com/en/article/10154822

Download Persian Version:

https://daneshyari.com/article/10154822

Daneshyari.com