ARTICLE IN PRESS

Tetrahedron xxx (2018) 1-8

Contents lists available at ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

Highly efficient synthesis of 1,2-disubstituted acetylenes derivatives from the cross-coupling reactions of 1-bromoalkynes with organoalane reagents

Xue-Bei Shao, Xin Jiang, Qing-Han Li*, Zhi-Gang Zhao

College of Chemistry and Environmental Protection Engineering, Southwest University for Nationalities, Chengdu, 610041, PR China

ARTICLE INFO

Article history:
Received 30 April 2018
Received in revised form
28 August 2018
Accepted 30 August 2018
Available online xxx

Keywords: Palladium Cross-coupling Arylaluminum reagents Alkynylhalides Acetylenes derivatives

ABSTRACT

A Highly efficient route for the synthesis of 1,2-disubstituted acetylene derivatives has been developed by palladium catalyzed cross-couplings of alkynyl halides with (hetero)aryl aluminium reagents under mild conditions. This has given corresponding cross-coupling products good to excellent isolated yields of up to 99%. The aryls bearing electron-donating or electron-withdrawing groups in either alkynylhalides or arylaluminum substrates gave cross-coupling products good yields. This process was simple and easily performed, which provides an efficient method for the synthesis of 1,2-disubstituted acetylenes derivatives. On the basis of the experimental results, a possible catalytic cycle has been proposed.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Palladium-catalyzed cross-coupling reactions are found to be extremely powerful in constructing new C-X (X=C, N, O, etc.) bonds [1]. Among these reactions, Sonogashira coupling reaction [2], which was discovered in the early 1970s has been emerged as one of the most potent transformations [3]. The corresponding acetylenic products are important synthetic units in the preparation of potential bioactive compounds [4], new materials [5], and natural products as well [6]. Concerning the importance of this reaction, researchers have directed their efforts towards the development of more efficient or single metal catalyst systems, milder reaction conditions, and other such objectives during the past decades [7]. Although, these efforts have provided alternative methods for the synthesis of alkynes, these reactions still suffer from excess bases, co-catalysts, high temperature, relatively long reaction times, and the special reaction medium. The development of more efficient and atom economical approaches for the synthesis of alkynes remains as desirable work. Aryl halides, especially aryl iodides and bromides, and alkynes are the preferred coupling partners in these reactions. Particularly, 1-bromoalkynes, which is

https://doi.org/10.1016/j.tet.2018.08.050 0040-4020/© 2018 Elsevier Ltd. All rights reserved. easily synthesized from terminal alkynes, has been widely applied in cross-coupling reactions [8]. Recently, the synthesis of 1, 2-disubstituted acetylenes by copper or nickel-catalyzed cross-coupling of Grignard reagents with alkynyl bromides has been described [9]. In addition to the above reagents, organoalane reagents have been extensively used as nucleophiles for organic reactions [10].

In recent times, metal-catalyzed cross-coupling reactions of electrophiles with alkynylmetallic reagents have provided an alternative route for the preparation of alkyne compounds [11]. Previous studies show that organoalane reagents are a highly efficient nucleophiles for cross-coupling reactions with aromatic halides [12] or benzylic halides. [13] While, the synthesis based on direct coupling of alkynyl halide with organoalane reagents using palladium as catalyst is developed rarely. To continue our efforts in developing coupling reactions using reactive organometallic reagents [9b,10c,13,14], and develop a more efficient and convenient procedures for the preparation of 1, 2-disubstituted acetylenes, herein, we wish to report a new method for the synthesis of 1, 2disubstituted acetylenes via palladium-catalyzed cross-couplings between 1-bromoalkynes and organoalane reagents in the presence of Pd(PPh₃)₄ (1 mol%) and DPPE (2 mol%) at 60 °C. Notably, in our procedure palladium is used as the single catalyst and neither base nor additive is needed to obtain 1,2-disubstituted acetylenes

^{*} Corresponding author.

E-mail addresses: lqhchem@swun.cn, lqhchem@163.com (Q.-H. Li).

reaction.

$$R-AlEt_2 + R' - Br - Br - Pd(PPh_3)_4 (1 mol\%)$$

$$R-AlEt_2 + R' - Br - Br - R - R - R$$

 ${\bf Scheme~1.~Palladium-catalyzed~cross-coupling~reactions~of~1-bromoal kyne~derivatives~with~organoal ane~nucleophiles.}$

in good to excellent isolated yields (Scheme 1).

2. Results and discussion

In our initial research, we performed the reaction between 1-(2bromoethynyl)-4-methylbenzene $(p-MeC_6H_4C\equiv CBr)(1a,$ 0.5 mmol) with diethylphenylaluminum (C₆H₅AlEt₂) (**2a,** 1.0 mmol) in the presence of Pd(OAc)₂ (1 mol%) in THF at 60 °C for 5 h. To our delight, 16% isolated yield of the desired 1-methyl-4-(2phenylethynyl)-benzene was obtained (4aa) (Table 1, entry 1). Then, different palladium salts were examined (Table 1, entries 2-6). Notably, Pd(PPh₃)₄ gave the best result among the tested palladium salts (Table 1, entry 3). The product ratio is about 33:66:1 in favor of the coupling product 4aa. To further understand the nature of this catalysis, we tested the reaction of 1a with 2a under various conditions and the results are listed in Tables 1 and 2. The effect of various ligands in the generation of **4aa** using Pd(PPh₃)₄ as catalyst is shown in Table 1 (Table 1, entries 7-11). Although the highest isolated yield of coupling product 4aa (82% yield) was obtained when DPPP was used, the product ratio is only about 16:78:6 (Table 1, entry 9). While, the isolated yield of coupling product 4aa was only 74% when using DPPE as ligand, but the product ratio is up to 9:90:1 in favor of the coupling product **4aa**. Other ligands such as PPh₃, PCy₃ and DPPB were less effective than DPPE (Table 1, entries 7, 8, 10).

The molar ratio of metal and ligand was examined. It was found

 $\begin{tabular}{ll} \textbf{Table 1} \\ \textbf{Effect of the palladium salt and the ligand on the cross-coupling reaction.} \\ \end{tabular}$

Cat.	Ligand	Yield 4aa (%) ^b	3aa/4aa/5aa ^c
Pd(OAc) ₂	_	16	55/42/3
$Pd(PPh_3)_2Cl_2$	_	37	45/51/4
$Pd(PPh_3)_4$	_	78	33/66/1
PdCl ₂	_	16	50/44/6
Pd(dppf)Cl ₂	_	43	41/56/3
Pd ²⁺ (acac)	_	30	47/48/5
$Pd(PPh_3)_4$	PCy_3	43	29/67/4
$Pd(PPh_3)_4$	PPh_3	50	37/59/4
$Pd(PPh_3)_4$	DPPP	82	16/78/6
$Pd(PPh_3)_4$	DPPB	55	18/78/4
$Pd(PPh_3)_4$	DPPE	74	9/90/1
	Pd(OAc) ₂ Pd(PPh ₃) ₂ Cl ₂ Pd(PPh ₃) ₄ PdCl ₂ Pd(dppf)Cl ₂ Pd ²⁺ (acac) Pd(PPh ₃) ₄ Pd(PPh ₃) ₄ Pd(PPh ₃) ₄ Pd(PPh ₃) ₄	Pd(OAc) ₂ - Pd(PPh ₃) ₂ Cl ₂ - Pd(PPh ₃) ₂ Cl ₂ - Pd(PPh ₃) ₄ - PdCl ₂ - Pd(dppf)Cl ₂ - Pd ²⁺ (acac) - Pd(PPh ₃) ₄ PCy ₃ Pd(PPh ₃) ₄ PPh ₃ Pd(PPh ₃) ₄ DPPP Pd(PPh ₃) ₄ DPPP	Pd(OAc) ₂ - 16 Pd(PPh ₃) ₂ Cl ₂ - 37 Pd(PPh ₃) ₄ - 78 PdCl ₂ - 16 Pd(dppf)Cl ₂ - 43 Pd ²⁺ (acac) - 30 Pd(PPh ₃) ₄ PCy ₃ 43 Pd(PPh ₃) ₄ PPh ₃ 50 Pd(PPh ₃) ₄ DPPP 82 Pd(PPh ₃) ₄ DPPB 55

^a 1a/2a/Cat/Ligand = 0.5/1.0/0.005/0.01 mmoL, THF 2 mL.

 $\begin{tabular}{ll} \textbf{Table 2} \\ \textbf{Effect of the solvent and the molar ratio of $Pd(PPh_3)_4/DPPE$ on the cross-coupling} \\ \end{tabular}$

Entry ^a	2a(mmol)	Solvent	Yield 4aa (%) ^b	3aa/4aa/5aa ^c
1 ^d	1	THF	51	21/74/5
2 ^e	1	THF	74	9/90/1
3 ^f	1	THF	49	13/78/8
4^{g}	1	THF	60	7/90/3
5	1	hexane	37	32/64/4
6	1	toluene	30	23/75/2
7	1	DME	47	34/63/3
8 ^h	1	THF	38	3/63/34
9	0.8	THF	77	9/90/1
10	0.5	THF	31	5/79/16
11 ⁱ	0.8	THF	67	10/78/12
12 ^j	0.8	THF	77	3/96/1
13 ^k	0.8	THF	8	1/98/1

- ^a $1a/Pd(PPh_3)_4/Ligand = 0.5/0.005/0.01 \text{ mmol}, 60 °C, 5 h.$
- b Isolated.
- c Ratio of isolated yield.
- ^d $Pd(PPh_3)_4/DPPE = 1/1$.
- e Pd(PPh₃)₄/DPPE = 1/2.
- ^f $Pd(PPh_3)_4/DPPE = 1/3$.
- ^g Pd(PPh₃)₄/DPPE = 0.01/0.02 mmol.
- h 2.0 equiv K₂CO₃.
- i 6 h.
- ^j 4 h.
- ^k r.t, 4 h.

that a Pd(PPh₃)₄/DPPE ratio of 1.0/2.0 gave the coupling product 4aa in good isolated yield of 74% with a ratio of 9:90:1 in favor of the coupling product 4aa (Table 2, entry 2). A brief examination of the influence of solvent on the isolated yield of the coupling product 4aa and reaction selectivity revealed that THF was the solvent of choice. In toluene, hexane, or DME, the isolated yield of the coupling product **4aa** was low and reaction selectivity was poor (Table 2, entries 5–7). Further studies indicated that the catalyst loading dramatically influenced the isolated yield of the coupling product 4aa. It was found that the most favorable catalyst loading is 1 mol% Pd(PPh₃)₄/2 mol% DPPE (Table 2, entry 2). It is particularly interesting that the addition of K2CO3 as a base could somewhat decrease the isolated yield of the coupling product 4aa and reaction selectivity (Table 2, entry 8). The desired coupling product 4aa was obtained in 77% isolated yield with good selectivity for the 1,2disubstituted acetylenes 4aa when 1a and 2a (molar ratio 0.5: 0.8) were stirred in THF in the presence of Pd(PPh₃)₄ at 60 °C for 5 h (Table 2, entry 9). It is worth noting that the desired coupling product 4aa was obtained in 77% isolated yield with excellent selectivity when the reaction time is shortened from 5 h to 4 h (Table 2, entry 12). However, the isolated yield of the coupling product 4aa and reaction selectivity were decreased when the reaction time was extended to 6 h (Table 2, entry 11). Although excellent selectivity can be obtained at room temperature, the isolated yield of the coupling product 4aa is only 8% (Table 2, entry 13). Extensive screening showed that the optimized coupling conditions were 1 mol% Pd(PPh₃)₄/2 mol% DPPE, 0.5 mmol 1a, 0.8 mmol 2a in THF at 60 °C for 4 h (Table 2, entry 9).

b Isolated.

^c Ratio of isolated yield.

Download English Version:

https://daneshyari.com/en/article/10154981

Download Persian Version:

https://daneshyari.com/article/10154981

<u>Daneshyari.com</u>