Accepted Manuscript

Full Length Article

Conjugated Conducting Polymers (PANI) Decorated Bi₁₂O₁₇Cl₂ Photocatalyst with Extended Light Response range and enhanced photoactivity

Yuanguo Xu, Yun Ma, Xiaoyu Ji, Shuquan Huang, Jiexiang Xia, Meng Xie, Jia Yan, Hui Xu, Huaming Li

PII: S0169-4332(18)32519-4

DOI: https://doi.org/10.1016/j.apsusc.2018.09.103

Reference: APSUSC 40407

To appear in: Applied Surface Science

Received Date: 14 August 2018
Revised Date: 11 September 2018
Accepted Date: 11 September 2018

Please cite this article as: Y. Xu, Y. Ma, X. Ji, S. Huang, J. Xia, M. Xie, J. Yan, H. Xu, H. Li, Conjugated Conducting Polymers (PANI) Decorated Bi₁₂O₁₇Cl₂ Photocatalyst with Extended Light Response range and enhanced photoactivity, *Applied Surface Science* (2018), doi: https://doi.org/10.1016/j.apsusc.2018.09.103

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Conjugated Conducting Polymers (PANI) Decorated Bi₁₂O₁₇Cl₂

Photocatalyst with Extended Light Response range and

enhanced photoactivity

Yuanguo Xu, ^{a*} Yun Ma, ^a Xiaoyu Ji, ^a Shuquan Huang, ^a Jiexiang Xia, ^a Meng Xie, ^a Jia Yan, ^b Hui Xu, ^b Huaming Li, *^b

^a School of Chemistry and Chemical Engineering, School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China.

^b Institute for Energy Research, Jiangsu University, Zhenjiang 212013, PR China.

*E-mail: xuyg@ujs.edu.cn; lhm@ujs.edu.cn

Abstract: In this work, PANI/Bi₁₂O₁₇Cl₂ composites have been successfully synthesized via a simple and green strategy at room temperature. From TEM, EDS-mapping and DRS results, it can be seen that conducting polymers PANI loaded well on the Bi₁₂O₁₇Cl₂, and extended the light-absorption region of the composite to higher wavelength. The photocatalytic activity was evaluated by removal of CIP under visible light ($\lambda > 420$ nm). The degradation rate of the optimal ratio composite is about 2 times to that of Bi₁₂O₁₇Cl₂. The photodegradation intermediates of CIP were identified by mass spectrometry and the toxicity of the CIP photodegraded products was investigated via a microbiological antibacterial reaction. The results indicated the low-toxicity of the degraded products. Photocurrent results showed that the high separation and transfer of the photogenerated charge carriers were implemented by the introduction of PANI into the surface of Bi₁₂O₁₇Cl₂ material. Furthermore, long wavelength light ($\lambda > 550$ nm) degradation of CIP indicated that the PANI played as photosentizer could extend the light absorption region and thus enhance the photocatalytic ability. The reaction rate constant of optimal ratio PANI/Bi₁₂O₁₇Cl₂ composite was 3.1 times to Bi₁₂O₁₇Cl₂. Eventually, a possible photocatalysis mechanism was proposed.

Key Words: PANI; Bi₁₂O₁₇Cl₂; photocatalytic; toxicity; CIP;

Download English Version:

https://daneshyari.com/en/article/10155075

Download Persian Version:

https://daneshyari.com/article/10155075

<u>Daneshyari.com</u>