Author's Accepted Manuscript

Nb₂AlC-particle induced accelerated crack healing in ZrO₂-matrix composites

Martin Stumpf, Tobias Fey, Kenichi Kakimoto, Peter Greil

 PII:
 S0272-8842(18)31907-2

 DOI:
 https://doi.org/10.1016/j.ceramint.2018.07.164

 Reference:
 CERI18886

To appear in: Ceramics International

Received date:11 June 2018Revised date:10 July 2018Accepted date:18 July 2018

Cite this article as: Martin Stumpf, Tobias Fey, Kenichi Kakimoto and Peter Greil, Nb₂AlC-particle induced accelerated crack healing in ZrO₂-matrix c o m p o s i t e s , *Ceramics International*, https://doi.org/10.1016/j.ceramint.2018.07.164

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Nb₂AIC-particle induced accelerated crack healing in ZrO₂-matrix composites

Martin Stumpf¹, Tobias Fey^{1,2}, Kenichi Kakimoto², Peter Greil¹

¹Department of Materials Science (Glass and Ceramics), University of Erlangen-Nuernberg, Martensstr. 5, 91058 Erlangen, Germany

²Frontier Research Institute for Materials Science, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan

Abstract

The oxidation induced crack healing behavior of pre-cracked Nb₂AlC particle loaded ZrO₂matrix composites was explored by annealing in air at 1200 °C for short periods of 10 and 20 min. Composites loaded with 0, 6.5, 13, and 19.5 vol. % Nb₂AlC powder dispersed in 3Y-TZP matrix powder were manufactured by spark plasma sintering (SPS) at 1300 °C. Semi-elliptical artificial surface cracks with a length exceeding 220 μ m were produced by Vickers indentation. The modulus of rupture of virgin, indented and annealed samples was measured in three-point bending mode. Compared to single phase 3Y-TZP strength recovery of the Nb₂AlC loaded composite upon annealing at 1200 °C in air is accelerated and reaches > 60 % of the initial strength after a short healing period of 10 min only. A semi-empirical oxidation cohesive zone healing model was derived which describes the crack microstructure evolution as a combined effect of 3Y-TZP-matrix healing superimposed by Nb₂AlC particle oxidation induced healing.

Key words

Crack healing; Nb₂AlC particle inclusion; ZrO₂-based composites

Corresponding Author

Tobias Fey, tobias.fey@fau.de

Tel. +49 9131 8527546

Fax +49 9131 8528311

Download English Version:

https://daneshyari.com/en/article/10155397

Download Persian Version:

https://daneshyari.com/article/10155397

Daneshyari.com