Accepted Manuscript

Title: Role of Sodium Deficiency on the Relaxor Properties of $Bi_{1/2}Na_{1/2}TiO_3$ -BaTiO₃

Authors: Chang-Hyo Hong, Zhongming Fan, Xiaoli Tan, Woo-Seok Kang, Chang Won Ahn, Yooleemi Shin, Wook Jo

PII:	S0955-2219(18)30489-8
DOI:	https://doi.org/10.1016/j.jeurceramsoc.2018.08.006
Reference:	JECS 12031
To appear in:	Journal of the European Ceramic Society
Received date:	9-4-2018
Revised date:	2-8-2018
Accepted date:	3-8-2018

Please cite this article as: Hong C-Hyo, Fan Z, Tan X, Kang W-Seok, Ahn CW, Shin Y, Jo W, Role of Sodium Deficiency on the Relaxor Properties of $Bi_{1/2}Na_{1/2}TiO_3$ -BaTiO₃, *Journal of the European Ceramic Society* (2018), https://doi.org/10.1016/j.jeurceramsoc.2018.08.006

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Role of Sodium Deficiency on the Relaxor Properties of Bi_{1/2}Na_{1/2}TiO₃-BaTiO₃

Chang-Hyo Hong,¹ Zhongming Fan,² Xiaoli Tan,² Woo-Seok Kang,¹ Chang Won Ahn,³

Yooleemi Shin,¹ and Wook Jo^{1,*}

¹School of Materials Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea

²Department of Materials Science and Engineering, Iowa State University, Ames, IA 50011, USA

³Department of Physics, University of Ulsan, Ulsan 44610, Republic of Korea

*Corresponding Author

E-mail address: wookjo@unist.ac.kr

Abstract

The influence of A-site deficiency on the relaxor properties in the lead-free $(1-x)(Bi_{1/2}Na_{1/2})TiO_3-xBaTiO_3$ solid solution system was studied by intentionally reducing Na content in reference to the stoichiometric compositions. We observed that for all compositions, the higher the level of Na deficiency was, the lower the transition temperature from a ferroelectric to relaxor state became. The compositions with intermediate BaTiO₃ contents (x = 0.06, 0.09, 0.13, and 0.40) showed sprout-shaped strains and pinched polarization curves at room temperature, indicating a crossover from a non-ergodic Download English Version:

https://daneshyari.com/en/article/10155484

Download Persian Version:

https://daneshyari.com/article/10155484

Daneshyari.com