
Contents lists available at ScienceDirect

Journal of Non-Crystalline Solids

journal homepage: www.elsevier.com/locate/jnoncrysol

Structural transformations and mechanical properties of porous glasses
under compressive loading

Nikolai V. Priezjeva,b,*, Maxim A. Makeevc,*

a Department of Mechanical and Materials Engineering, Wright State University, Dayton, OH 45435, USA
bNational Research University Higher School of Economics, Moscow 101000, Russia
c Department of Chemistry, University of Missouri-Columbia, Columbia, MO 65211, USA

A R T I C L E I N F O

Keywords:
Disordered solids
Glasses
Deformation
Molecular dynamics simulations

A B S T R A C T

The role of porous structure and glass density in the response behavior to compressive deformation of amor-
phous materials is investigated via molecular dynamics simulations. The disordered, porous structures were
prepared by quenching a high-temperature binary mixture below the glass transition point into the phase co-
existence region. With decreasing average glass density, the pore morphology in quiescent samples varies from a
random distribution of compact voids to complex pore networks embedded in a continuous glass phase. We find
that during compressive loading at constant volume, the porous structure is linearly transformed in the elastic
regime and the elastic modulus follows a power-law increase as a function of the average glass density. Upon
further compression, pores deform significantly and coalesce into large voids leading to formation of domains
with nearly homogeneous glass phase, which provides an enhanced resistance to deformation at high strain.

1. Introduction

The prediction of the mechanical response of disordered solids is
important for a number of industrial applications, and, at the same
time, it poses a challenging fundamental problem [1,2]. It is well re-
cognized by now that deformation and flow of bulk metallic glasses
occur through rapid, localized rearrangements of atoms that induce
strongly anisotropic stress redistribution over long distances [3,4]. At
the mesoscopic level, this process can be described by elastoplastic
models, where the system is coarse-grained into interacting elements
that obey a set of rules including linear elastic response, local yield
criterion, stress propagation, and recovery [1]. Interestingly, atomistic
simulations revealed that both the yield and flow stresses of metallic
glasses [5] and nanocrystalline metals [6] are higher in compression
than in tension. More recently, it was shown that several factors affect
deformation and failure of cellular metallic glasses under compression;
namely, the cell size controls the transition from localized to homo-
geneous plastic deformation, while the cell shape, e.g., circular versus
hexagonal, might change the strength and energy absorption capacity
due to variation in stress concentration at the cell surface [7]. Never-
theless, a complete understanding of the elastic response and yield in
homogeneous and porous metallic glasses is yet to be achieved.

A number of recent experimental studies have reported the results of
uniaxial compression tests performed on metallic glass pillars [8-14].

Most importantly, it was found that when the sample size is decreased
down to the submicron dimensions, the deformation mode changes
from shear band propagation to homogeneous plastic flow, which can
be attributed to the existence of a critical strained volume required for
the formation of a shear band [9]. The observed behavior can be ra-
tionalized by realizing that collectivity of flow defects, or shear trans-
formation zones, toward localization is suppressed in sufficiently small
systems, and the enhanced ductility corresponds to a large number of
weakly correlated shear transformations [8]. It was also shown that
during compression of micron-scale amorphous silica pillars, the plastic
deformation is accompanied with a periodic array of radial cracks at the
top of the pillars, which results in some case in splitting into two parts
upon unloading [15]. However, despite significant efforts, the corre-
lation between ductility, fracture, and strength of amorphous materials
as well as the dependence on preparation history and loading condi-
tions remain not fully understood to date.

The microscopic mechanisms of the glass-gas phase separation ki-
netics at constant volume were recently studied using molecular dy-
namics simulations [16,17]. Following a rapid quench below the glass
transition temperature, a simple glass-forming system was found to
gradually transform into an amorphous solid with a porous structure
whose properties depend strongly on the average glass density and
temperature [16,17]. Interestingly, it was shown that the pore-size
distribution functions obey a single scaling relation at small length
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scales for systems with high porosity, while the local density of the solid
phase remains relatively insensitive to the total pore volume [18]. Later
studies have examined the dynamic response of porous glasses

subjected to either steady shear [19] or tensile [20] deformation. In
both cases it was found that the porous structure becomes significantly
modified due to pore redistribution and coalescence into large voids
upon increasing strain [19,20]. The analysis of local density profiles
during tensile loading showed that necking develops in the low-density
regions leading to an extended plastic strain and ultimate breaking of
the material [20].

In our recent study [19], we discussed the theoretical models, de-
veloped to describe the elastic moduli of porous materials and com-
pared our simulation results on shear deformation of porous glasses
with analytical predictions. We found that the simulated modulus de-
pendence on density cannot be described using a single theory. How-
ever, the data can be fitted in the limits of low and high porosities using
different approaches (see [19] and references therein). In the limit of
large porosities, the percolation theory was found to adequately de-
scribe the simulation data. In the limit of low porosity, a model, based
on the Eshelby approach to the problem of embedded inclusions, can be
utilized. The general conclusion of the study [19] is that elastic re-
sponse properties of porous materials are strongly dependent on the
particular realization of pore-size distribution and topology of pore
network in the sample. Recently, similar conclusions were reached by
the authors of Ref. [21], who pointed out the existing differences be-
tween materials with isolated pores and those having more complicated
topology of porous structures.

In this study, we examine the evolution of porous structure and
mechanical response of amorphous solids subjected to compressive
loading using molecular dynamics simulations. It will be shown that

Fig. 1. The representative snapshots of the porous samples with N=300,000 atoms at the temperature T=0.05 ε/kB for the average glass densities (a) ρσ3= 0.2, (b)
ρσ3= 0.4, (c) ρσ3= 0.6, and (d) ρσ3= 0.8. Different atom types are denoted by blue and red circles. Note that atoms are not depicted to scale.
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Fig. 2. The strain dependence of stress σxx (in units of εσ−3) during compres-
sion (εxx<0) and extension (εxx>0) with the strain rate = − −ε τ̇ 10xx

4 1. The
average glass densities are ρσ3= 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 1.0
(from bottom to top along the vertical dotted line). The elastic modulus, E (in
units of εσ−3) as a function of ρσ−3 is shown in the inset. The dashed line is
plotted for reference.

N.V. Priezjev, M.A. Makeev Journal of Non-Crystalline Solids xxx (xxxx) xxx–xxx

2



Download English Version:

https://daneshyari.com/en/article/10155519

Download Persian Version:

https://daneshyari.com/article/10155519

Daneshyari.com

https://daneshyari.com/en/article/10155519
https://daneshyari.com/article/10155519
https://daneshyari.com

