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A B S T R A C T

We have developed a numerical model based on finite element analysis (FEA) with a viscoelastic material model
coupling stress relaxation and structural relaxation, using the Mauro-Allan-Potuzak (MAP) non-equilibrium
viscosity equation as the shift function. A modeling study of the delayed elasticity behavior in glass under
different equilibrium viscosity and non-equilibrium viscosity conditions is conducted. The delayed elastic re-
sponse is found to be well described by a stretched exponential function with three parameters: the maximum
delayed elasticity response, the retardation time of delayed elasticity response, and the stretching exponent of
delayed elasticity response. The delayed elasticity magnitude is seen to increase with lower values of the
stretching exponent bstress. At equilibrium viscosity, the retardation time shows a linear relationship with the
stress relaxation time. However, when the temperature drops sharply in the non-equilibrium viscosity cases, the
delayed elastic response may be frozen resulting in a lower magnitude for the delayed elasticity and the re-
tardation time is not linear any more with the stress relaxation time. The delayed elasticity stretching exponent is
seen to vary slightly at different relaxation times and normalized delayed elasticity response can roughly be
collapsed into a single master curve. The impact of liquid fragility is also studied.

1. Introduction

Glass is a material formed by quenching a liquid from equilibrium
fast enough to avoid crystallization. In the glass transition temperature
region, glass deformation exhibits viscoelastic behavior, where the
material has both viscous and elastic characteristics when undergoing
deformation. In this temperature range, the molecular rearrangements
occur on a scale of minutes or hours, appearing as relaxation char-
acteristics that can be well described by viscoelastic models. Two pri-
mary types of glass relaxation are structural relaxation and stress re-
laxation. Structural relaxation describes the time-dependent change in
structural configuration due to the thermodynamic disequilibrium of
the glass. Stress relaxation involves the decay of internal stress in the
glass and entails a conversion from elastic strain to viscous strain.
Historically, the dependence of the stress relaxation function on tem-
perature can be accounted for by the assumption of thermo-rheological
simplicity (TRS), based on the shift function concept. The shift function
is closely related to the viscosity of the glass, characterizing the re-
laxation time dependence on the temperature and also fictive tem-
perature [1]. One choice of shift function is the WLF (Williams-Landel-
Ferry) [2] shift function, which does not consider the fictive tempera-
ture dependence. Another shift function widely used in glass simulation

is the Tool-Narayanaswamy shift function [3,4], which has been used in
viscoelastic simulations coupling the structural relaxation and stress
relaxation to predict the fictive temperature and stress calculation in
the glass annealing or tempering process [5–10]. The Tool-Nar-
ayanaswamy shift function is implemented and available in the com-
mercial finite element analysis (FEA) software ANSYS® [11]. Users can
take advantage of the capability to run simulations of structural re-
laxation and stress relaxation to track the fictive temperature and re-
sidual stress evolution in a glass object undergoing relaxation. Zheng
and Zhang [12] implemented the structural relaxation calculation with
the Tool-Narayanaswamy shift function, together with the stress re-
laxation in the COMSOL® software. Mauro et al. [13–16] have proposed
a new non-equilibrium viscosity model, the MAP (Mauro-Allan-Po-
tuzak) model, based on enthalpy landscape and temperature-dependent
constraint theories. It is demonstrated that the proposed model gives an
excellent fit to the measurement viscosity data. This new non-equili-
brium viscosity model provides a better option for the choice of shift
function, in terms of accurately capturing the non-equilibrium viscosity
behaviors.

Under a constant load, the viscoelastic response of a material has
three components: instantaneous elastic strain, delayed elastic strain,
and viscous deformation [17]. The instantaneous elastic response and
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viscous response are dependent on the modulus and viscosity, respec-
tively, so it is particularly important to understand the mechanisms and
key parameters affecting the delayed elasticity. The delayed elasticity
can be mistaken as an elastic response due to its recoverable nature, or
it can be mistaken as a viscous response due to its time-dependent/
delayed nature. Owing to the complicated nature of delayed elasticity,
it has attracted widespread attention in the research community
[17–22]. Every type of glass chemistry can display delayed elasticity.
For example, bulk metallic glasses (BMG) also show distinctive creep
and stress relaxation behaviors, as well as non-Newtonian features and
mixed relaxation kinetics [23–25].

In this work, the MAP non-equilibrium viscosity model is im-
plemented in the viscoelastic material model for both structural re-
laxation and stress relaxation inside the COMSOL® software. The vis-
coelastic material model is then coupled together with finite element
analysis (FEA) to study how the glass deforms and how the stress
evolves during loading/unloading near the glass transformation range.

2. Viscoelasticity and delayed elasticity

Viscoelastic materials show a combination of viscous and elastic
responses. At constant strain or displacement, this manifests as stress
relaxation, where the stress decays with time. At constant loading, it
manifests as creep, where the strain increases with time. The viscoe-
lastic material model describes the time-dependent constitutive re-
lationship between the stress and the strain, which can be written as

∫= − ′
′

t t d
dt

σ D( ) ϵt

0 (1)

where σ is the stress tensor, D is the modulus matrix and ϵ is the strain
tensor. We see that the stress is an integration of the previous history,
meaning that the stress has a “memory effect.” The viscoelastic beha-
vior may be represented by combinations of spring and dashpot ele-
ments [17]. Each spring and dashpot element represent the elastic and
viscous response, respectively. There are different ways to connect the
spring and dashpot elements. Some of the simple models are shown in
Fig. 1, where the single element Maxwell model, single element Voigt
model, and Burger model are presented. The single element Maxwell
model consists of a spring and a dashpot connected in series, the single
element Voigt model consists of a spring and a dashpot connected in
parallel, and the Burger model is a combination of the two. One can
extend the models by including multiple pairs of spring-dashpot in
series, in parallel, or both.

A widely used general form of the viscoelastic model is the gen-
eralized Maxwell model shown in Fig. 2, where N Maxwell elements
(spring-dashpot pair connected in series) are connected in parallel.

Considering a shear stress component σxy in Eq. (1), we will have

∫= − ′
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where G(t) is the shear modulus relaxation function and ϵxy is the
corresponding shear strain component. The shear modulus relaxation
function G(t) can be approximated by a Prony series, which represents
the generalized Maxwell model, in the form [11].

∑= ∞ + − ∞
=

−G t G G G w e( ) ( ) ( (0) ( )) ,
i

N

i
t

τ

1

si
(3)

where N is the number of terms, =τsi
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times, and wi are the weight coefficients, satisfying ∑ == w 1i
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i1 . Glass
relaxation is found to exhibit stretched exponential relaxation behavior
[17], i.e., the relaxation function for the stress σ(t) can be written as
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where b is the stretching exponent and τs is the average stress relaxation
time. Eq. (4) is a stretched exponential function, also called the b-
function or the Kohlrausch-Williams-Watts (KWW) function [17]. The
Prony series coefficients wi and τsi, can be chosen such that Eq. (3)
approximates the stretched exponential function [30] as
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Hence, the coefficients wi and τsi, i=1, …, N are determined from
the parameters b and τs for a given N. In the FEA simulations of this
work, N=6, meaning 6 terms of the Prony series, are used and provide
satisfactory accuracy.

With the constitutive relationship between the stress and strain es-
tablished, i.e., Eqs. (2) and (3), one can solve for σxy(t) given ϵxy(t), or
solve for ϵxy(t) given σxy(t). In the case of the creep test, where we apply
a constant stress and observe the strain response, it is essentially solving
for ϵxy(t) given σxy(t > 0)= σ0. In the special cases of the simple
models shown in Fig. 1, analytical solutions can be easily obtained [17]
as
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for a single element Maxwell model,
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for a single element Voigt model, and

Fig. 1. Simple viscoelastic models. (a) single element Maxwell model (b) single
element Voigt model (c) Burger model.

Fig. 2. Generalized Maxwell model.
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