Accepted Manuscript

Ultrasonic spray pyrolysis synthesis of nitrogen-doped porous Fe/C composites from glycerol for hexavalent chromium removal

Yanbin Cui, John D. Atkinson

PII: S0254-0584(18)30788-0

DOI: 10.1016/j.matchemphys.2018.09.037

Reference: MAC 20966

To appear in: Materials Chemistry and Physics

Received Date: 5 February 2018
Revised Date: 6 September 2018
Accepted Date: 8 September 2018

Please cite this article as: Y. Cui, J.D. Atkinson, Ultrasonic spray pyrolysis synthesis of nitrogen-doped porous Fe/C composites from glycerol for hexavalent chromium removal, *Materials Chemistry and Physics* (2018), doi: 10.1016/j.matchemphys.2018.09.037.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Ultrasonic Spray Pyrolysis Synthesis of Nitrogen-Doped Porous Fe/C Composites from

Glycerol for Hexavalent Chromium Removal

Yanbin Cui, John D. Atkinson*

Department of Civil, Structural, and Environmental Engineering, State University of New York at

Buffalo, NY 14260

* Email: AtkJDW@buffalo.edu. Phone: 716-645-4001. Fax: 716-645-3667.

Abstract

Nitrogen-doped porous carbon spheres impregnated with iron nanoparticles (Fe/C-N) are

prepared from glycerol, a by-product of the biodiesel industry, and ferric ammonium citrate

(FAC) via ultrasonic spray pyrolysis (USP). Carbon microspheres are generated during rapid (<

10 sec) pyrolysis of an aerosolized liquid precursor, resulting from acid induced dehydration,

polymerization, and carbonization of glycerol. Fe/C-N composites are predominantly meso and

macroporous, caused by iron-mediated carbon gasification during heating and salt templating.

Iron impregnation (up to 6.6 wt%) and nitrogen doping (up to 3.3 wt%) are achieved

simultaneously because FAC acts as both iron precursor and reducing agent. Reducing gases

released from thermally decomposed FAC react with carbon surfaces to deposit nitrogen while

facilitating in situ generation of Fe⁰ and Fe₃O₄. Cr(VI) removal capacity up to 33 mg/g is

reported, attributed to combined adsorption and reduction when applying Fe/C-N composites.

The described synthesis, therefore, converts an industrial by-product into value-added materials

with potential for use in environmental remediation.

Keywords: Ultrasonic spray pyrolysis, glycerol, ferric ammonium citrate, nitrogen-doped carbon,

hexavalent chromium removal

1

Download English Version:

https://daneshyari.com/en/article/10155601

Download Persian Version:

https://daneshyari.com/article/10155601

<u>Daneshyari.com</u>