Accepted Manuscript EPR study of $\mathrm{RE^{3+}}$ (RE = Nd, Gd, Dy) doped $\mathrm{CdMoO_4}$ single crystal H. Fuks, J. Typek, M. Berkowski, M. Głowacki, E. Tomaszewicz PII: S0254-0584(18)30800-9 DOI: 10.1016/j.matchemphys.2018.09.049 Reference: MAC 20978 To appear in: Materials Chemistry and Physics Received Date: 17 April 2018 Accepted Date: 14 September 2018 Please cite this article as: H. Fuks, J. Typek, M. Berkowski, M. Głowacki, E. Tomaszewicz, EPR study of RE³⁺ (RE = Nd, Gd, Dy) doped CdMoO₄ single crystal, *Materials Chemistry and Physics* (2018), doi: 10.1016/j.matchemphys.2018.09.049 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. # **ACCEPTED MANUSCRIPT** ## EPR study of RE³⁺ (RE = Nd, Gd, Dy) doped CdMoO₄ single crystal H. Fuks^{1*}, J. Typek¹, M. Berkowski², M. Głowacki², E. Tomaszewicz³ ¹West Pomeranian University of Technology, Szczecin, Institute of Physics, Al. Piastów 48, 70-311, Szczecin, Poland ² Institute of Physics, PAS, Al. Lotników 32/46, 02-668 Warszawa, Poland ³West Pomeranian University of Technology, Szczecin, Faculty of Chemical Technology and Engineering, Department of Inorganic and Analytical Chemistry, Al. Piastów 42, 71-065 Szczecin, Poland *corresponding author: <u>fux@zut.edu.pl</u> (H. Fuks) tel.: +48 91 449 45 85; fax: +48 91 449 41 81 #### **Abstract** The electron paramagnetic resonance (EPR) studies of RE³⁺ (RE = Nd, Gd, Dy) doped CdMoO₄ single crystals grown by Czochralski method were carried out in 4 – 300 K temperature range. Analysis of EPR spectra lineshapes and resonance field dependence on crystal orientation in an external magnetic field allowed allocate the RE³⁺ ions to the low symmetry site of Cd²⁺ in CdMoO₄ crystal. Additionally, RE³⁺ complex magnetic entities created due to charge compensation, were registered. In the case of Nd³⁺ doped CdMoO₄ crystal the values of *g* spectroscopic matrix were calculated and the influence of the excited states via the Orbach process was observed. Keywords: Scheelites; EPR; RE; Magnetic dimers; Orbach process ### Download English Version: # https://daneshyari.com/en/article/10155617 Download Persian Version: https://daneshyari.com/article/10155617 <u>Daneshyari.com</u>