Accepted Manuscript

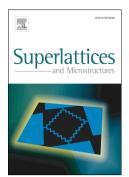
Optimization design and preparation of near ultraviolet AlGaN/GaN distributed Bragg reflectors

Pengchong Li, Yuantao Zhang, Liang chen, Ye Yu, Xu Han, Long Yan, Gaoqiang Deng, Baolin Zhang

PII: S0749-6036(18)30260-X

DOI: 10.1016/j.spmi.2018.05.034

Reference: YSPMI 5701


To appear in: Superlattices and Microstructures

Received Date: 6 February 2018

Accepted Date: 17 May 2018

Please cite this article as: Pengchong Li, Yuantao Zhang, Liang chen, Ye Yu, Xu Han, Long Yan, Gaoqiang Deng, Baolin Zhang, Optimization design and preparation of near ultraviolet AlGaN/GaN distributed Bragg reflectors, *Superlattices and Microstructures* (2018), doi: 10.1016/j.spmi.2018.05.034

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Optimization design and preparation of near ultraviolet AlGaN/GaN distributed Bragg reflectors

Pengchong Li, Yuantao Zhang*, Liang chen, Ye Yu, Xu Han, Long Yan, Gaoqiang

Deng, Baolin Zhang

State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, People's Republic of China

Abstract

In this paper, near-ultraviolet AlGaN/GaN distributed Bragg reflectors (DBRs) are designed by the optimization of refractive index contrast (△n/n) and prepared by metalorganic vapor phase epitaxy. The relationship between refractive index contrast and Bragg wavelength for Al_{0.2}Ga_{0.8}N/GaN DBRs are analyzed theoretically. Through the calculation, it is found that the refractive index contrast, the reflectivity and the stopband of DBRs are the function of Bragg wavelength. According to the calculation results, Al_{0.2}Ga_{0.8}N/GaN DBRs with Bragg wavelength ranging from 375 nm to 387 nm show a high reflectivity and a wide stopband. To confirm the results above, crack-free Al_{0.2}Ga_{0.8}N/GaN DBRs with different Bragg wavelength and different pairs are prepared. The relationship between the reflectivity and the Bragg wavelength for the prepared DBRs is agreed with the calculation results. Especially, a high peak reflectivity of 95% and wide stopband of about 15 nm are achieved for the 50-pair crack-free Al_{0.2}Ga_{0.8}N/GaN DBRs with Bragg wavelength at 385 nm. It is reasonable

-

^{*} E-mail: zhangyt@jlu.edu.cn

Download English Version:

https://daneshyari.com/en/article/10155760

Download Persian Version:

https://daneshyari.com/article/10155760

Daneshyari.com