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A B S T R A C T

The ΔE effect of Galfenol single crystal is anisotropic and symmetric. The magnetomechanical behavior of
polycrystalline Fe-Ga alloy was found to be dependent on the grain distribution. An energy-based model was
used to simulate the effect of grain distribution on ΔE effect and coupling factor of the polycrystalline Galfenol
alloy. Seven types of textured Fe84Ga16 alloys each with 95, 75 and 50 vol% textured grains were designed by the
MTEX toolbox. The alloys having the same<uvw>preferred orientation show a similar ΔE effect and coupling
factor variation with the stress and magnetic field. Different< uvw>preferred oriented alloys have great
difference in the ΔE effect and coupling factor variation. The effect of texture intensity on the ΔE effect and
coupling factor depends on the texture types. The 〈100〉 oriented alloys with fiber texture, Goss texture and cube
texture respectively have a similar large ΔE effect. The texture intensity has a relatively small effect on the ΔE
effect and coupling factor k of 〈100〉 oriented alloys. Compared with 〈100〉 oriented alloys, the 〈110〉 and 〈112〉
oriented alloys have much smaller ΔE effect and coupling factor. The ΔE effect and coupling factor variation with
stress and magnetic field of those two kinds of textured alloys is much more complex than that of 〈100〉 textured
alloys.

1. Introduction

Fe-Ga alloys are promising actuation and sensing material because
of their moderate magnetostriction under low saturated field and good
mechanical property [1]. For magnetic material the strain-stress re-
sponse under stress appears non-linear. This phenomenon is called ΔE
effect [2]. When a magnetic field is applied on material, the Young’s
modulus appears to be affected not only by the stress but also by the
magnetic field [3–5]. The ΔE effect of Galfenol can be utilized in vi-
bration control and stiffness control [6–10]. The Young’s modulus re-
sponse to stress and magnetic field of Fe-Ga is significant for its ap-
plication. Magnetomechanical coupling factor k is a measure of the
coupling of magnetic energy into the elastic energy of the material
which is usually used as a measure of transduction efficiency of the
material.

The ΔE effect of Galfenol has interested many researchers. S. Datta
et al. studied the variability in Young’s modulus of single crystal Fe-Ga
alloys with different composition, which showed more than 60%
change in Young’s modulus [5]. G. Petculescu et al. measured the
elastic moduli of Fe100−xGax (x= 12–33) single crystals with and
without a magnetic field within 4–300 K, and found that the moduli

show a smooth dependence on temperature [11]. S.U. Jen et al. mea-
sured the Young’s modulus E and damping capacity of Fe81Ga19 under
the temperature varied from room temperature to 300 °C, and the re-
sults showed that in the E versus T plot when H=0 there is a down-
ward kink at 232 °C [12]. In previous study, we have studied the
magnetomechanical behavior along different crystal directions [13],
which clearly showed that the ΔE effect varies with the crystal direc-
tion. The 〈100〉 directions have the largest magnetostriction and the
largest ΔE effect under the same bias magnetic field. It can be expected
that the grain distribution has a great effect on the magnetomechanical
coupling behavior. The production cost of single crystal Fe-Ga alloy is
high, so commercial actuators and sensors are more likely to be made of
textured polycrystalline Fe-Ga alloy with little degradation of the ac-
tuation and sensing properties. However, there is no work system-
atically studying the effect of grain orientation distribution on the
magnetomechanical behavior of Fe-Ga alloy which is useful for material
application and production.

In order to obtain large magnetostriction, it is better to produce
polycrystalline alloy with 〈100〉 preferred orientation. 〈100〉 fiber
texture is usually obtained by directional solidification [14]. {110}
〈001〉 Goss texture and {001}〈100〉 cube texture are two kinds of
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texture usually obtained by rolling and secondary recrystallization
[15,16]. Na also obtained {110}〈112〉 texture when the (Fe81.3Ga18.7)
+1 at.% B+0.05 at.% S sheet was annealed at 1200 °C for 2 h [16].
For the BCC Fe-Ga alloys, {001}〈110〉 rotated cube texture, {111}
〈110〉 and {111}〈112〉 textures are often obtained after rolling [17]. In
this study these seven kinds of texture are simulated to study the effect
of grain orientation on the ΔE effect and coupling factor.

Model simulation is widely used in the study of magnetomechanical
behavior of magnetostrictive material. L. Daniel and O. Hubert used a
semi-analytical model in which magnetization rotation is not con-
sidered to simulate the ΔE effect [18,19]. Zhangxian Deng et al. pre-
sented a new optimization procedure on the basis of an existing discrete
energy-averaged model which incorporated measurement uncertainties
to simulate the minor strain-stress loops [20]. S. Datta predicted the
variable modulus in Galfenol as a continuous function of stress and
magnetic field by using an energy-based non-linear constitutive model
which was developed on the basis of Armstrong model [5]. The model
prediction showed good correlation with experimental results.

In this work, with the bias magnetic field and compressive stress
applied along various crystallographic directions, the magnetomecha-
nical behavior of Fe-Ga single crystal has been studied on the basis of an
energy-based model. Then seven kinds of textured alloys each with 95,
75 and 50 vol% textured grains were simulated to compare the influ-
ence of grain distribution on the ΔE effect and magnetomechanical
coupling factor. The results show that the magnetomechanical behavior
depends on the preferred orientation. This study could be very mean-
ingful for the Galfenol production and its application design.

2. Model description

In this paper, an extended model based on the Armstrong model is
used to simulate the magnetomechanical behavior of single crystal and
polycrystalline Galfenol alloys. This probability model was originally
proposed by Armstrong to model the magnetization and magnetos-
triction of TbDyFe [21]. This model was adapted later on by many
researchers to model the sensing and actuating behavior of magnetos-
trictive material. Won-Je Park et al. combined this probability dis-
tribution model with the Jile-Theokle model to simulate the domain
motion and predict the magnetostriction of TbDyFe [22]. J. Atulasimha
et al., using a model based on the Armstrong model, modeled the
magnetomechanical behavior of polycrystalline Fe-Ga alloy from its
cross-section texture by treating the polycrystal as composed of mul-
tiple grains of sing crystals, each with a different orientation to the
loading axis [23]. S. Datta developed a model based on the Armstrong
model to simulate the figures of merits of Fe-Ga alloys with different
composition [24].

When applied magnetic field and stress, the magneto-elastic equi-
librium of a magnetostrictive material can be seen as a result of a
competition between several energy contributions: the exchange energy
Gex, magnetocrystalline anisotropy energy GK, magnetostatic energy
GH, magnetoelastic energy Gme, elastic energy Gel and mechanical
workdone Wmech. The exchange energy can be ignored because it is very
small in a bulk sample. The works of Kittel, Chikazumi and Mudivarthi
[25–27] show that the magnetoelastic energy Gme, elastic energy Gel

and mechanical workdone Wmech can merge into two terms: a stress-
induced energy Gσ and an anisotropy energy due to the equilibrium
magnetostrictive strains. Then the total energy affecting both strain and
magnetization in a bulk material is expressed by the sum of magneto-
crystalline energy, magnetostatic energy and stress-induced anisotropy
energy as shown in Eq. (1). The stress-induced anisotropy energy Gσ
was also called as strain or stress energy [28], and it has been erro-
neously called as the magnetoelastic energy [29] or elastic energy [30].
Some researchers even wrongly thought that the elastic energy and the
magnetoelastic energy are the same [18].
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where αi, βi and γi (i = 1, 2, 3) are the direction cosines of the mag-
netization, applied magnetic field and applied stress, respectively. K1

and K2 are the magnetocrystalline anisotropy coefficients, and the K1

used here is fixed with the magnetostrictive anisotropy constant. H is
the magnetic field strength and σ is the magnitude of applied uniaxial
stress. λ100 and λ111 are saturated magnetostriction coefficients.

In this study for simplicity uniaxial stress is used, but in reality the
stress state is complex. So here Eq. (1) is extended to incorporate 3D
stresses. For 3D modeling, the stress-induced energy expression in Eq.
(1) needs slight modification. Any 3D stress tensor acting on a body can
be decomposed into three principle stresses σj and principle directions
(γ1j, γ2j, γ3j). The stress-induced anisotropy energy is sum of the stress-
induced anisotropy energies due to each principle stress [27]

∑ ∑= ⎧
⎨
⎩

− ⎛

⎝
⎜ − ⎞

⎠
⎟− + + ⎫

⎬
⎭= =

G λ σ α γ λ σ α α γ γ α α γ γ α α γ γ3
2

1
3

3 ( )σ D
j

j
i

i ij j j j j j j j3
1

3

100
1

3
2 2

111 1 2 1 2 2 3 2 3 1 3 1 3

(2)

The direction cosines can be expressed in terms of the azimuthal
angle θ and polar angle ϕ. So the total free energy Gt can be expressed
in terms of θ and ϕ. It is assumed that the magnetic moment distributes
along a spatial direction (θi, ϕj) with a certain distribution probability
Pij which is determined by the energy along this direction. Armstrong
[19] gave the expression of probability Pij:
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The magnetostriction along the direction (β1R, β2R, β3R) can be
calculated as the sum of all magnetic moments contribution:
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where Gt(θ,ϕ) is the total energy for the magnetization along the di-
rection (θ, ϕ). ω is the energy distribution parameter. The βiR (i= 1, 2,
3) is the direction cosine of measurement.

In this model the hysteresis effect is not considered for simplicity. It
is assumed that the magnetization process is reversible. However, in
reality because of the imperfections and the magnetocrystalline aniso-
tropy of material the magnetization process is irreversible. So if want to
improve the simulation accuracy, the hysteresis effect needs to be
considered in future study.

For the Fe-Ga single crystal with cubic structure, its Young’s mod-
ulus is crystallographic direction-dependent. The Young’s modulus E at
any direction of [hkl] can be calculated by the following relationship:
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