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A B S T R A C T

Type 15 pentagon was recently discovered three decades since the 14th type of pentagon was reported in 1985.
In contrast to such a long time span, the list of two-dimensional (2D) materials keeps growing longer on a
monthly (if not daily) basis according to emerging experimental and theoretical reports. Combining these two
seemingly irrelevant topics, we apply density functional theory (DFT) calculations to examine the possibility of
forming a 2D nanosheet with the vertices of type 15 pentagons occupied by boron, carbon, silicon, phosphorous,
sulfur, gallium, germanium, or tin atoms. We find that none of the optimized eight nanosheets remain the same
initial structure filled with type 15 pentagons after the geometry optimizations by a DFT calculator. Instead, we
obtain different rearranged structures for each nanosheet, most of which have not yet been reported before. For
example, gallium atoms form a 2D nanosheet structure with a triangular pattern similar to single-layer boron
sheet called borophene. These new 2D materials exhibit formation energies comparable to that of single-layer
silicene, implying the feasibility of being grown on a substrate. The electronic structure shows that all the eight
nanosheets are metallic (or semi-metallic for the carbon nanosheet), compensating for the dearth of metallic
systems in existing 2D materials that are mostly semiconducting. Our work shows that linking a pentagonal
geometry with DFT calculations yields both educational and scientific merits.

1. Introduction

The essential point in the definition of a crystal is its periodicity
denoting the existence of translational vectors by which the atoms in
the crystal repeat themselves. In addition to translation vectors, a
crystal often exhibits other symmetry elements such as rotation and
inversion axes [1]. However, translation cannot necessarily coexist with
any of these other symmetry elements. For example, it is well known
and also straightforward to prove that a crystal cannot possess fivefold
rotation axes [2].

Similarly, tiling a plane with regular (i.e., equiangular and equi-
lateral) pentagons without rendering a gap in-between the pentagons is
impossible. But tiling a plane with irregular, convex pentagons is an
exception. In fact, how many types of irregular, convex pentagons that
can tile a plane has been a long-standing geometry problem puzzling
many mathematicians for a century–the first such convex pentagon was
found in 1918 and the latest one in 2015 by Mann, McLoud, and Von
Derau [3]. 15 types of convex pentagons have been discovered so far to
be capable of tiling a gapless plane. More recently, Rao claims to have
proved that there exist only 15 types of convex pentagons for tiling a
plane [4].

Analogizing a planar structure with that of a two-dimensional (2D)

material (e.g., graphene [5]) and the vertices of convex pentagons with
atomic coordinates provides natural ingredients for density functional
theory (DFT) calculations. As a result of this analogy, an intriguing
question to ask is: can an element form a 2D nanosheet of one of the
existing types of convex pentagons?

DFT is established by Hohenberg and Kohn who prove that the
external potential that electrons experience is completely dependent on
the ground state electron density [6]. Instead of using the many-body
wave function, DFT uses the electron density as a key variable to solve
the Schrödinger equation: =H EΨ Ψ. Kohn and Sham recast the still
many-body problem into an independent-particle problem [7,8]. The
Hamiltonian H is a square matrix whose eigenvectors and eigenvalues
need to be solved. Furthermore, many software use a linear combina-
tion of plane waves for approximating the wave function Ψ [9–12]. The
obtained energy E can be used to derive a variety of properties such as
the elastic modulus measuring the rigidity of a material [13]. The
practical simplicity of DFT calculations lies at the dependence of H and
Ψ on the initial lattice parameters and atomic coordinates of a simu-
lation cell for a material. DFT calculations have been widely applied to
predict new structures owing to this simplicity [14]. Benefitted from
DFT calculations, numerous 2D materials have been predicted to as-
sociate with unexpected crystal structures and exotic properties
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[15–22].
To answer the previous question, we use the most recently dis-

covered type 15 pentagon as an example to demonstrate the robustness
of DFT calculations in predicting 2D crystal structures and obtaining
their electronic structure. We use a unit cell by placing boron, carbon,
silicon, phosphorous, sulfur, gallium, germanium, or tin atoms at the
vertices of type 15 pentagons. The reason for choosing these elements is
because a single element can form different allotropes of 2D materials
often named with a suffix of “-ene” like borophene [23], silicene [24],
and germanene [25], which have been reported in theoretical or ex-
perimental studies. We then apply DFT calculations to the unit cell and
fully relax the geometry to examine the resulting structure. Based on
the optimized single-layer nanosheets, we compute the electronic
structure to determine whether they are metallic or semiconducting.

2. Methods

Fig. 1(a) shows a type 15 pentagon along with its angles and side
lengths. Being a convex pentagon, all of the angles lie between 0 and
180°. Three of the five side lengths (d d,12 34, and d45) are the same and
they are also shorter than the other two side lengths (d23 and d51).
Fig. 1(b) illustrates a unit cell of a 2D material formed from one of the
eight elements. Each unit cell contains 20 atoms. The two lattice vectors
are: [26] = + +a ((10 7 3 )/4, (3 2 3 )/4) and =b
− + +( (1 3 )/4, (3 3 )/4). The angle between vectors a and b is thus

= °α 103.7 . To avoid overlapping atoms in the input configuration, we
scale the lattice vectors by factors that range from 2.5 to 4.0 depending
on the different sizes of atoms.

We use the Vienna Ab-initio Simulation Package (VASP) to perform
the DFT calculations [9]. The electron-electron exchange-correlation
interaction is a part of the Hamiltonian treated by the Perdew-Burke-
Ernzerhof (PBE) functional [27]. The potential data sets describing the
electron-nucleus interactions are based on the projector augmented
wave method [28,29]. The periodic boundary conditions are applied in
all three directions of a surface slab of 2D nanosheet. A vacuum spacing
of the surface slab is set to 18.0Å that is thick enough to isolate image
interactions. For all the calculations, the plane waves with the kinetic
cutoff energy below 500 eV are involved to approximate the total
electronic wave function. For the integration in the reciprocal space, a

× ×4 8 1 Γ-centered k-point grid generated with the Monkhorst-Pack
method is used. We employ the conjugate-gradient method[30] to

optimize the 2D structures [31]. The in-plane lattice constants and
atomic positions are fully updated during the optimization process until
the criterion of force convergence that is smaller than 0.01 eV/Å is met.

3. Results and discussion

Fig. 2(a)–(h) displays the optimized structures of the eight na-
nosheets resulting from the DFT calculations. Table 1 lists the lattice
parameters and the shortest bond length. We observe that these opti-
mized structures are vastly different from the input ones. In particular,
B atoms occupy the vertices of nearly regular pentagons separated by
triangles; C atoms form hexagonal carbon rings and restore the struc-
ture of graphene with a typical CeC bond length of 1.42Å; Si atoms
locate at the vertices of pentagon and rectangles; Similar to bulk Si in
the diamond structure, several Si atoms in the unit cell favor a fourfold
coordination resembling the sp3 hybridization; P atoms appear to gen-
erate a chain structure, each of which consists of a combination of
different shapes of polygons; S atoms also prefers to form chain struc-
tures while the types of polygons are not as visible; Ga atoms weave a
web of triangles that are also found in an allotrope of borophene de-
noted as △B ; [32] Ge atoms create a similar pattern of triangles.
However, embedded in the pattern are squares to connect the triangles;
Sn atoms adopt a mixture of polygons (parallelogram, pentagons, and
hexagons); The resulting diverse structures is due to the fact that the
atoms resist the same geometry constraint imposed on them in a dif-
ferent manner, as these elements have their own preferred chemical
bonding environments [33]. Although type 15 pentagons are com-
pletely destroyed in the nanosheets, the unit cell remains periodic. The
DFT simulator (i.e., VASP) therefore behaves like a skilled tile installer
to assemble a gapless plane using a blend of various polygons.

To assess the energy cost of obtaining each optimized structure of
the eight nanosheets, we calculate the formation energy Ef defined as
the energy difference between a nanosheet and its most stable bulk
counterpart [34], whose structure is listed in Ref. [35]. Table 1 shows
that the calculated Ef ranges from 0.09 to 0.91 eV/atom. The smallest
Ef expectedly belongs to the carbon nanosheet (graphene) that has been
mechanically exfoliated from graphite [5]. Aside from graphene, the Ef
of the other nanosheets are generally too high to lead to a suspended
nanosheet. However, most of the Ef are comparable to that of silicene
(0.76 eV/atom) [36], which has been grown on a Ag substrate. There-
fore, a suitable substrate may stabilize these 2D nanosheets [37],
among which Ga nanosheet appears to be a promising 2D system not
only because of its moderate Ef but also due to the structural similarity
with the △B structure that has already been synthesized on the Ag(111)
surface [38].

Fig. 2(i)–(p) shows the density of states (DOS) of the optimized eight
nanosheets. As can be seen, all the DOS at the Fermi level of the na-
nosheets except graphene are non-zero, confirming that these na-
nosheets are metallic. The DOS of graphene at the Fermi level is zero
because of the Dirac cone associated with semi-metallic behavior. The
DOS of the P, S, and Sn nanosheets exhibit a typical feature of 1D
system–abundant peaks arising from the Van Hove singularities. This
feature in the DOS of the P, S, and Sn nanosheets is consistent with their
chain structures as shown in Fig. 2(d), (e) and (h). A number of 2D
materials are attractive because they are semiconductors, valuable for
optical, electrical, or photocatalytic applications [37,39]. Metallic 2D
materials are much less, but exhibit similarly promising applications in
such as nanoplasmonics [32] and superconductors [40]. As graphene
has found a plethora of applications, we expect the other seven pre-
dicted metallic nanosheets to be useful additions to the large family of
2D materials.

4. Conclusions

We explored the possibility of forming a 2D crystalline material
with atoms located at the vertices of type 15 pentagons by performing

Fig. 1. (a) Sketch of type 15 pentagon and its angles and side lengths. (b) 2D
crystal structure with the atoms represented by spheres located at the vertices
of type 15 pentagons. A unit cell of the 2D crystal is enclosed by solid lines.
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